Google scholar, Youtube channel

ORCID, Scopus ID, Research gatePublons, arXiv, GitHub


(*Dr. Li is the corresponding author)

(Dr. Li’s students and postdocs at JHU)

––At JHU––

Preprint

  1. Xuan Q, *Li C. Environmental force sensing enables robots to traverse cluttered obstacles with interaction, in preparation (Movie) Preprint
  2. Fu Q, *Li C. Snake robot traversing large obstacles using vertical bending with force feedback, in preparation (Movie) Preprint

2022

  1. Othayoth R, †Strebel B, Han Y, Francois E, *Li C. A terrain treadmill to study animal locomotion through large obstacles, Journal of Experimental Biology, 225(13), jeb243558 (†Equal contribution) (Movies 1, 2, 3) PDF
  2. Wang Y, Othayoth R, *Li C. Cockroaches adjust body and appendages to traverse cluttered large obstacles, Journal of Experimental Biology, 225 (10), jeb243605 (Movies 1, 2, 3) PDF
  3. Fu Q, Astley HC, *Li C (2022). Snakes combine vertical and lateral bending to traverse uneven terrain, Bioinspiration & Biomimetics, 17 (3), 036009 (Movies 1, 2) PDF
  4. Ramesh D, Fu Q, *Li C (2022). SenSnake: A snake robot with contact force sensing for studying locomotion in complex 3-D terrain, IEEE International Conference on Robotics and Automation (ICRA), 2068-2075 (Movie) PDF
  5. Mi J, Wang Y, *Li C (2022). Omni-Roach: A legged robot capable of traversing multiple types of large obstacles and self-righting, IEEE International Conference on Robotics and Automation (ICRA), 235-242 (Outstanding Locomotion Paper Finalist, ICRA 2022) (Movie) PDF
  6. Zheng B, Xuan Q, *Li C (2022), A minimalistic stochastic dynamics model of cluttered obstacle traversal, IEEE Robotics and Automation Letters, 7 (2), 5119-5126 (Movie) PDF
  7. *Li C, Lewis K (2022), The need for and feasibility of alternative robots to traverse sandy and rocky extraterrestrial terrain, Advanced Intelligent Systems, 202100195 (Invited Article) PDF

2021

  1. Othayoth R, *Li C (2021), Propelling and perturbing appendages together facilitate strenuous ground self-righting, eLife, 10:e60233 (Movies 1 2 3 4 5 6 7 8 9 10) PDF
  2. Othayoth R, Xuan Q, Wang Y, *Li C (2021), Locomotor transitions in the potential energy landscape-dominated regime, Proceedings of the Royal Society B: Biological Sciences, 288 (1949), 20202734 (Movie) Video abstract, Talk PDF
  3. Han Y, Othayoth R, Wang Y, Hsu C-C, de la Tijera Obert R, Francois E, *Li C (2021), Shape-induced obstacle attraction and repulsion during dynamic locomotion, International Journal of Robotics Research, 40(6-7), 939-956 (Movies 1 2 3 4 5 6 7 8 9 10 11 12 13) PDF
  4. Fu Q, †Mitchel TW, Kim JS, Chirikjian GS, *Li C (2021), Continuous body 3-D reconstruction of limbless animals, Journal of Experimental Biology, 224 (6), jeb220731 (†Equal contribution; Movies 1 2 3) PDF
  5. Choi H, Crump C, Duriez C, Elmquist A, Hager G, Han D, Hearl F, Hodgins J, Jain A, Leve F, Li C, Meier F, Negrut D, Righetti L, Rodriguez A, Tan J, Trinkle J (2021), On the use of simulation in robotics: opportunities, challenges, and suggestions for moving forward, Proceedings of the National Academy of Sciences, 118 (1), e1907856118 PDF

2020

  1. Xuan Q, *Li C (2020), Randomness in appendage coordination facilitates strenuous ground self-righting, Bioinspiration & Biomimetics, 15 (6), 65004 (Movies 1 2 3) PDF
  2. Xuan Q, *Li C (2020), Coordinated appendages help accumulate energy to self-right on the ground, IEEE Robotics and Automation Letters, 5 (4), 6137-6144 (Movie) Talk PDF
  3. Othayoth R, Thoms G, *Li C (2020), An energy landscape approach to locomotor transitions in complex 3D terrain, Proceedings of the National Academy of Sciences, 117 (26), 14987-14995 (Movies 1 2 3 4 5 6 7 8 9 10) PDF
  4. Fu Q, Gart SW, Mitchel TW, Kim JS, Chirikjian GS, *Li C (2020), Body undulation and compliance help snakes and snake robots traverse stably traverse large, smooth obstacles, Integrative & Comparative Biology, 60 (1), 171-179 (Invited Article) Talk PDF
  5. Fu Q, *Li C (2020), Robotic modeling of snake traversing large, smooth obstacles reveals stability benefits of body compliance, Royal Society Open Science, 7 (2), 191192 (Movies 1 2 3 4) PDF
  6. Yang C, Ding L, Tang D, Gao H, Niu L, Li C, Deng Z (2020), Improved Terzaghi theory-based interaction modeling of rotary robotic locomotors with granular substrates, Mechanism & Machine Theory, 152, 103901 PDF

2018-2019

  1. *Li C, Wöhrl T, Lam HK, Full RJ (2019), Cockroaches use diverse strategies to self-right on the ground, Journal of Experimental Biology, 222 (15), jeb186080 (Movies 1 2 3) PDF
  2. Gart SW, Mitchel TW, *Li C (2019), Snakes partition they body to traverse large steps stably, Journal of Experimental Biology, 222 (8), jeb185991 (Movies 1 2 3) PDF
  3. Gart SW, Yan C, Othayoth R, Ren Z, *Li C (2018), Dynamic traversal of large gaps by insects and legged robots reveals a template, Bioinspiration & Biomimetics, 13, 026006 (Movies 1 2 3 4) PDF
  4. Gart SW, *Li C (2018), Body-terrain interaction affects large bump traversal of insects and legged robots, Bioinspiration & Biomimetics, 13, 026005 (Movies 1 2 3 4) PDF

2016-2017

  1. *Li C, Kessens CC, Fearing RS, Full RJ (2017), Mechanical principles of dynamic terrestrial self-righting using wings, Advanced Robotics, 31, 881-900 (Invited Article; Advanced Robotics Best Paper Award, 4 awards out of 96) PDF
  2. *Li C, Kessens CC, Young A, Fearing RS, Full RJ (2016), Cockroach-inspired winged robot reveals principles of ground-based dynamic self-righting, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2128-2134 (Highlight Paper of IROS 2016) Talk PDF
  3. Aguilar J, Zhang T, Qian F, Kingsbury M, McInroe B, Mazouchova N, Li C, Maladen RD, Gong C, Travers M, Hatton RL, Choset H, Umbanhowar PB, Goldman DI (2016), A review on locomotion robophysics: The study of movement at the intersection of robotics, soft matter and dynamical systems, Reports on Progress in Physics, 79 (11), 110001 PDF

––Before JHU––

  1. *Li C, Pullin AO, Haldane DW, Lam HK, Fearing RS, Full RJ (2015), Terradynamically streamlined shapes in animals and robots enhances traversability through densely cluttered terrain, Bioinspiration & Biomimetics, 10 (4), 046003 (B&BHighlights of 2015, 12 awards out of 110) PDF
  2. Haldane DW, Casarez CS, Karras JT, Lee J, Li C, Pullin AO, Schaler EW, Yun D, Ota H, Javey A, Fearing RS (2015), Integrated manufacture of exoskeletons and sensing structures for folded millirobots, ASME Journal of Mechanisms and Robotics, 7 (2), 021011 PDF
  3. Li C, Zhang T, Goldman DI (2013), A terradynamics of legged locomotion on granular media, Science, 339 (6126), 1408-1412 (Featured in Science Perspective) PDF
  4. Ding Y, Li C, Goldman DI (2013), Swimming in the desert, Physics Today, 66 (11), 68-69 PDF
  5. Zhang T, Qian F, Li C, Masarati P, Hoover AM, Birkmeyer P, Pullin AO, Fearing RS, Goldman DI (2013), Ground fluidization promotes rapid running of a lightweight robot, International Journal of Robotics Research, 32 (7), 859-869 (Invited Article) PDF
  6. Li C, Hsieh ST, Goldman DI (2012), Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides), Journal of Experimental Biology, 215 (18), 3293-3308 (Cover ArticlePDF
  7. Li C, Zhang T, Goldman DI (2012), A resistive force model of legged locomotion on granular media, Climbing & Walking Robots Conference (Adaptive Mobile Robotics), 433-440 PDF
  8. Li C, Ding Y, Gravish N, Maladen RD, Masse A., Umbanhowar PB, Komsuoglu H, Koditschek DE, Goldman DI (2012), Towards a terramechanics for bio-inspired locomotion in granular environments, ASCE Earth & Space Conference, 264-273 PDF
  9. Qian F, Zhang T, Li C, Masarati P, Hoover AM, Birkmeyer P, Pullin AO, Fearing RS, Goldman DI (2012), Walking and running on yielding and fluidizing ground, Robotics: Science & Systems, 8, 345-352 (Best Student Paper at RSS 2012) PDF
  10. Ding Y, Gravish N, Li C, Maladen RD, Mazouchova N, Sharpe SS, Umbanhowar PB, Goldman DI (2011), Comparative studies reveal principles of movement on and within granular media, IMA Workshop on Locomotion: Natural Locomotion in Fluids and on Surfaces, 155, 281-292 PDF
  11. Li C, Umbanhowar PB, Komsuoglu H, Goldman DI (2010), The effect of limb kinematics on the speed of a legged robot on granular media, Experimental Mechanics, 50 (9), 1383-1393 PDF
  12. Li C, Hoover AM, Birkmeyer P, Umbanhowar PB, Fearing RS, Goldman DI (2010), Systematic study of the performance of small robots on controlled laboratory substrates, Proceedings of SPIE, 7679, 1-13 (Invited Paper) PDF
  13. Li C, Umbanhowar PB, Komsuoglu H, Koditschek DE, Goldman DI (2009), Sensitive dependence of the motion of a legged robot on granular media, Proceedings of the National Academy of Sciences, 106 (9), 3029-3034 (Best Student Paper, DCB, SICB 2009; Featured in Physics Today and IEEE Spectrum) PDF 
  14. Maladen RD, Ding Y, Li C, Goldman DI (2009), Undulatory swimming in sand: subsurface locomotion of the sandfish lizard, Science, 325 (5938), 314-318 (Featured in Nature News & Views) PDF

Dissertations & Theses

Doctoral Dissertations

  1. Othayoth R (2021). Kinetic energy fluctuation-driven locomotor transitions on potential energy landscapes of beam obstacle traversal and ground self-righting, Doctoral Dissertation, Johns Hopkins University PDF
  2. Li C (2011). Biological, robotic, and physics studies to discover principles of legged locomotion on granular media, Doctoral Dissertation, Georgia Institute of Technology PDF

Master Theses

  1. Zheng B (2021). A stochastic dynamics model of beam obstacle traversal in two dimensions, Master Thesis, Johns Hopkins University PDF

Conference Abstracts