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Abstract

Animals’ physical interaction with their environment, although often difficult, is

effective and enables them to move robustly by using and transitioning between

different modes such as running and climbing. Although robots exhibit some of

these transitions, we lack a principled approach to generating and controlling

them using effective physical interaction. Bridging this knowledge gap, in addi-

tion to advancing our understanding of animal locomotion, will improve robotic

mobility.

Recent studies of physical interaction with environment discovered that dur-

ing beam obstacle traversal and ground self-righting, discoid cockroaches use

and transition between diverse locomotor modes probabilistically and via mul-

tiple pathways. To traverse beams, the animal first pushes against them, but

eventually pitches up due to beam restoring forces, following which it either

pushes across beams (pitch mode) or rolls into the gap (roll mode). To self-right,

the animal opens and pushes its wings against the ground, which pitches its body

forward (metastable mode), and then rolls sideways (roll mode). Here, we seek

to begin to explain these observations by integrating biological, robotic, and

physics studies. We focus on pitch-to-roll and metastable-to-roll transitions of

cockroaches during escape and emergency responses and feedforward-controlled
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robots.

We discovered that across both systems, physical interaction is stochastic,

with animals showing more variability. Animal and robot system states are

strongly attracted to basins of their potential energy landscape, resulting in

stereotyped locomotor modes. Locomotor transitions are probabilistic barrier-

crossing transitions between landscape basins. Whereas the animal and robot

traversed stiff beams via roll mode, they pushed across flimsy beams, suggest-

ing that modes with easier physical interaction are more probable to occur

(more favorable). Varying potential energy barriers by changing beam torsional

stiffness (in the animal and robot) and kinetic energy fluctuation by changing

body oscillation (in the robot) in both beam traversal and self-righting revealed

that kinetic energy fluctuation comparable to the barrier facilitates probabilistic

transition to the more favorable mode. Changing the system configuration (self-

righting robot’s wing opening) facilitates transitions by lowering the barrier.

The animal’s pitch-to-roll transition during beam traversal occurred even with

insufficient kinetic energy fluctuation, suggesting that sensory feedback may

be involved. These discoveries support the use of potential energy landscapes

as a framework to understand locomotor transitions. Finally, we implemented

methods for tracking and 3-D reconstruction of small animal locomotion in an

existing terrain treadmill.

Primary Reader and Advisor: Chen Li

Secondary Readers: Noah J. Cowan, Louis L. Whitcomb
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Chapter 1

Introduction

1.1 Motivation and Significance

Movement is one of the most ubiquitous and conspicuous features of animals

(Alexander, 2006; Biewener, 2003; Tinbergen, 1955) and occurs across diverse

environments ranging from rainforests to deserts to flat plains, and over large

spatiotemporal scale. Animals’ terrestrial locomotion in such natural environ-

ments, requires generating necessary propulsion (Taylor and Heglund, 1982),

which results in significant physical interaction of limbs and often the body with

the terrain (Alexander, 2006; Biewener, 2003; Dickinson et al., 2000). Physical

interaction between animal and environment is often complex and seemingly

difficult (Dickinson et al., 2000; Holmes et al., 2006). In addition to the hetero-

geneity and variation in physical properties such as shape, size, and stiffness of

environment and continual terrain contact, animals must also operate under the

constraints imposed by their morphology and physiology (Figure 1.1). These

may limit the animals’ propulsion (Dickinson et al., 2000; Taylor and Heglund,

1982) when moving in their environment.
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Figure 1.1: Physical interaction during terrestrial locomotion is constrained by
environmental, morphological, and physiological constraints. Examples of phys-
ical interaction during locomotion. (A) American cockroach exiting a crevice.
(B) Mouse passing trough a vertical gap. (C) Search and Rescue dog mov-
ing in rubble. (D) Lizards moving through flexible shrubs. Images courtesy of
(A) PolyPEDAL Lab, (B) Getty Images, (C) Ground Zero Emergency Canine
Training, (D) LLL Reptile and Supply Co Inc.

Despite these seeming difficulties during physical interaction, terrestrial lo-

comotion in biological organisms is robust and agile (Dickinson et al., 2000;

Biewener, 2003; Alexander, 2006). Even with perturbations from continual con-

tact and instabilities in the environment (Sponberg and Full, 2008; Biewener

and Daley, 2007) and the biomechanical constraints imposed on them (Biewener,

2003; Holmes et al., 2006), animals adjust their physical interaction to generate

and maintain sufficient propulsion. Furthermore, in the extreme case of losing

foothold and flipping over on their back, animals self-right to get back on their

feet and continue moving (Ashe, 1970; Full, Yamauchi, and Jindrich, 1995; Li

2



Figure 1.2: Illustrative examples of animal and robot locomotor transitions.
Reproduced from (Othayoth, Thoms, and Li, 2020). Image credit: (A) Scott
Brill.

et al., 2019). Often, running or walking alone cannot accomplish effective loco-

motion in varying environments (e.g., cluttered forest floor, sparse branches in

canopy, etc.) and animals must transition (Lock, Burgess, and Vaidyanathan,

2013; Low et al., 2015) between different modes of locomotion such as climb-

ing (Goldman et al., 2006), rolling (Domokos and Várkonyi, 2008), burrowing

(Winter et al., 2014), or even self-righting (Li et al., 2019) (Figure 1.2A). They

do so robustly by making effective physical interaction with the environment.

Advancements in robotics over the past decades (Raibert, 1986; Saranli,

Buehler, and Koditschek, 2001; Raibert, 2008) have enabled robots to walk

and run stably across surfaces that are rigid (Raibert, 1986; Raibert, 2008),

rugged (Saranli, Buehler, and Koditschek, 2001), and even yielding (Li et al.,

2009; Li, Zhang, and Goldman, 2013; Aguilar and Goldman, 2016). State-

of-the-art legged robots such as those from Boston Dynamics (Bouman et al.,

2020), Ghost Robotics (Kenneally, De, and Koditschek, 2016), and ANYbotics

(Hwangbo et al., 2019; Lee et al., 2020) have not only begun to walk and run
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effectively in modest terrain but also transition to modes such as jumping and

somersaulting. However, the ability of such robots to transition between modes

is far from robust, and perhaps even fragile, in complex terrain with obstacles

as large as themselves. It is crucial to be able to robustly transition between

different modes of locomotion for robots to move effectively in natural, arti-

ficial or extraterrestrial environments (which often have physical constraints)

to autonomously perform tasks such as search and rescue in earthquake rub-

ble (Murphy et al., 2008), environmental monitoring in forests (Dunbabin and

Marques, 2012), extraterrestrial exploration on Mars (Titus et al., 2021), and

home service (Forlizzi and DiSalvo, 2006).

To enable these capabilities, we need general physics models that can inform

us how to predict and generate the necessary propulsion (Koditschek, 2021)

to interact with environment for transitioning to, avoiding, or escaping from

locomotor modes beyond walking and running. Improving robotic mobility in

extreme environments is a grand challenge in robotics (Yang et al., 2018), and

understanding the physics of locomotor transitions is an essential ingredient for

addressing this challenge.

A major obstacle towards accomplishing this grand challenge in robotics is

that we do not yet well understand how to make direct physical interaction with

their environment to transition between locomotor modes. Although existing

models such as the spring-loaded inverted pendulum (SLIP) model (Blickhan

and Full, 1993) are effective and generalize over a broad range of locomotor-

terrain parameters for dynamic running or walking (Holmes et al., 2006), they do

not inform locomotor transitions. In particular, we lack principled approaches
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and theoretical concepts for thinking about how to generate and control loco-

motor transitions emerging from physical interaction that are on the same level

as SLIP model for single-mode locomotion (Holmes et al., 2006). Bridging this

knowledge gap, in addition to advancing to our understanding of how biological

organisms move (Dickinson et al., 2000; Padilla et al., 2014), will also enable

robots to move robustly in nature for societally relevant applications (Yang et

al., 2018) such as search and rescue and environmental monitoring.

This dissertation is a step towards beginning to establish a framework to-

wards understanding how locomotor transitions emerge from physical interac-

tion with terrain. The following sections of this chapter will discuss the neces-

sary scientific background, the specific knowledge gaps that I seek to address,

and the approach towards addressing them.
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1.2 Background

Existing physics models in legged locomotion of animals and robots predom-

inantly focus on generating (Blickhan and Full, 1993; Goldman et al., 2006;

Kuo, 2007; Li, Hsieh, and Goldman, 2012), stabilizing (Biewener and Daley,

2007; Couzin-Fuchs et al., 2015; Revzen et al., 2013) or transitioning between

(Bramble and Lieberman, 2004; Diedrich and Warren, 1995; Hoyt and Taylor,

1981; Li, 2000) steady-state between walking and running. But the physical

principles and insights from these studies do not translate to scenarios where

the animal or robot must make locomotor transitions using physical interac-

tion while operating under environmental or biomechanical constraints. The

studies in this dissertation are motivated by the recent observations of physical

interaction during traversal of flexible beam-like obstacles (Li et al., 2015) and

self-righting on flat ground (Li et al., 2019) in discoid cockroaches (Blaberus

discoidalis, Figure 1.3).

Figure 1.3: Model organism and model systems. Discoid cockroach (Blaberus
discoidalis) (A) traversing flexible beams and (B) self-righting on flat ground.
Images courtesy of Will Kirk, Homewood Photography.
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In both beam obstacle traversal (Li et al., 2015) and ground self-righting (Li

et al., 2019), the animal displayed diverse, probabilistic locomotor transitions

that emerged via constrained physical interaction with its environment. To

traverse flexible beam obstacles or self-right, animals must physically interact

with the environment, which is often constrained or strenuous. For example,

traversing layers of adjacent beams with a gap narrower than their body width is

difficult for animals (Li et al., 2015); so is pushing against stiff beams which may

not deflect easily due to large restoring forces. Similarly, to self-right, animals

must overcome potential energy barriers that are seven times greater than the

mechanical energy required per stride for steady-state, medium speed running

(Kram, Wong, and Full, 1997) or, exert ground reaction forces eight times

greater than that during steady-state medium speed running (Full, Yamauchi,

and Jindrich, 1995). In the this section, we briefly summarize the results from

previous studies of locomotor transitions in beam obstacle traversal (Li et al.,

2015) and ground self-righting of cockroaches (Li et al., 2019).

1.2.1 Model system I: Beam obstacle traversal

To begin to understand physical interaction of animals with their environment

in three dimensions, Li and colleagues (Li et al., 2015) challenged cockroaches

to traverse flexible beams with gaps smaller than their body width. The study

discovered that during the physical interaction to traverse the beam obstacles,

cockroaches use different modes such as climbing up the beams, rolling in be-

tween the beam gaps, pushing against the beams, falling forward, or moving

laterally (Figure 1.4A). Animals transitioned between different modes and did
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Figure 1.4: Model system I : Beam obstacle traversal. (A) Schematic of diverse
locomotor modes observed during beam traversal. (B) Multi-pathway locomotor
transitions and their probabilities during beam traversal. Reproduced from (Li
et al., 2015).
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so via multiple pathways with varying probabilities (Figure 1.4B) during traver-

sal attempts. Some modes and transitions were more likely to occur than others,

with traversal most likely to occur via body rolling. This fact was attributed to

the streamlined ellipsoidal shape of the cockroach, which induced body rolling

from passive mechanical interactions. The study also hypothesized that body

rolling may be induced by the animal’s kinetic energy fluctuation from con-

stant body vibrations due to intermittent ground contact. Using a simplified

physics model (Figure 1.8), the authors speculated that during traversal, the

animal must overcome a potential energy barrier which may vary across different

modes (see Section 1.3 for details).

1.2.2 Model system II: Winged self-righting on flat
ground

An interesting observation in beam obstacle traversal (Li et al., 2015) led to

a more detailed study on self-righting (Li et al., 2019). As the cockroach tra-

versed and exited the beam obstacle field, it occasionally became unstable, lost

its foothold, and fell on its back but almost always self-righted to continue

moving. Li et al., 2019 discovered that cockroaches self-right on flat ground

via diverse strategies such as by opening their wings against ground (winged

self-righting) or by pushing their legs against the ground (legged self-righting)

(Figure 1.5A). It was also observed that physical interaction with flat ground

resulted in probabilistic transitions between self-righting modes via multiple

pathways (Figure 1.5). Certain modes and transitions were more likely to oc-

cur. In addition, the animal frequently and vigorously flailed its legs during
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Figure 1.5: Model system II : Ground self-righting (A) Winged and legged
modes observed during self-righting. (B) Multi-pathway locomotor transitions
and their probabilities during beam traversal. Reproduced from (Li et al., 2019)

its self-righting attempts; it was presumed that these created small kinetic en-

ergy fluctuation, which seem wasteful. Finally, the study proposed a simplified

physics model (Figure (1.9); see Section 1.3 for details) which was used to posit

that different modes overcame varying potential energy barriers.
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1.3 Towards a conceptual framework to
understand locomotor transitions
emerging from physical interaction

While seeking to begin to explain the common observations (see Section 1.2) in

both beam obstacle traversal (Li et al., 2015) and self-righting (Li et al., 2019),

we found interesting analogies between microscopic protein folding transitions

and macroscopic locomotor transitions. In this section, I describe how mecha-

nistic models for protein folding transitions inspired a framework to understand

locomotor transitions in beam obstacle traversal and ground self-righting, and

more broadly a variety of model systems studies in our lab (for a review, see

Othayoth et al., 2021b).

Figure 1.6: Free energy landscapes of protein folding transitions. Left: Fun-
nel shaped free energy landscapes of protein folding. As proteins fold, their
state moves transitions from a high energy state to a low energy state by over-
coming free energy barriers. Modified from Dill and MacCallum, 2012. Right:
Schematic of stochastic, multi-pathway protein folding transitions. Thicker ar-
rows show transitions that are more probable. Modified from Voelz et al., 2012.
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1.3.1 Inspiration: Free energy landscapes of protein
folding transitions

Our approach for understanding locomotor transition emerging from physical

interaction with environment is directly inspired by free energy landscapes of

multi-pathway protein folding transitions (Dill and Chan, 1997; Onuchic and

Wolynes, 2004; Wales, 2003). Free energy landscape is a function of all pos-

sible confirmations (molecular structure) of a protein molecule (Figure 1.6).

Microscopic, near-equilibrium proteins have a three-dimensional chain-like con-

formation which is initially unfolded and has a high free energy. To achieve its

biological function, the unfolded protein chain must fold into a specific confirma-

tion called the native state, which has the lowest possible free energy. However,

the transition from unfolded to native state does not occur in a single step;

instead, unfolded states progressively transition to various intermediate states

before reaching the native state. Lower free energy states are more stable and

hence thermodynamically more favorable. When the protein folding problem

is seen through the lens of free energy landscapes (Figure 1.6), the following

observations emerge:

1. Free energy landscapes have peaks (local free energy maxima) and basins

(local free energy minima) (Wales, 2003; Socci, Onuchic, and Wolynes,

1996).

2. When proteins fold, they transition from higher energy states/basins to

lower energy states/basins. In other words, proteins transition towards

thermodynamically more favorable, lower energy states (Onuchic, Luthey-

Schulten, and Wolynes, 1997).
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3. The transitions from high energy state/basin to a low energy state/basin

requires overcoming substantial free energy barriers separating the basins,

which is enabled by the random thermal energy fluctuation. Hence, transi-

tions are probabilistic (Dill and MacCallum, 2012; Onuchic and Wolynes,

2004).

4. Proteins can probabilistically transition via multiple pathways. How-

ever, some transitions are more likely than others depending on the ther-

modynamic favorability, barrier height, and thermal energy fluctuation

(Onuchic, Luthey-Schulten, and Wolynes, 1997).

5. In addition to thermal energy fluctuation, transitions can also be enabled

by modifying the landscape to lower the transition barrier (Dill and Chan,

1997).

Although our model systems (Li et al., 2015; Li et al., 2019) of beam traversal

and self-righting are macroscopic, self-propelled, and far-from-equilibrium, their

locomotor transitions share several similarities such as diverse locomotor modes,

multi-pathway transitions between locomotor modes that occur probabilisti-

cally, and preference of some modes over others. Inspired by the seeming simi-

larities of our system to them, we contend that the potential energy landscape

approach helps understand how self-propelled, far-from-equilibrium macroscopic

animals’ and robots’ probabilistic locomotor transitions during traversal of flex-

ible beam obstacles and self-righting on flat ground emerge from physical inter-

action, whose equations of motion are unknown or intractable (Aguilar et al.,

2016).
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1.3.2 Plausibility of a potential energy landscape
approach to locomotor transitions

A major challenge to modelling physical interaction during locomotor transi-

tions is the high degrees of freedom. Although the physical interaction obeys

Newton’s laws of motion, solving (or even deriving) the equation for such com-

plex systems is often intractable. Given these complexities, and the fact that

transitions are probabilistic in both beam obstacle traversal (Li et al., 2015)

and self-righting (Li et al., 2019), a statistical physics-like approach may prove

useful. A statistical physics treatment has advanced understanding of complex,

stochastic, macroscopic phase transitions in self-propelled living systems, such

as animal foraging (Viswanathan et al., 2011), traffic (Helbing, 2001), and active

matter (Fodor and Marchetti, 2018; Ramaswamy, 2010).

Previous use of potential energy functions approaches for robot manipula-

tion and parts alignment (Peshkin and Sanderson, 1988; Brost, 1992; Krish-

nasamy, 1996) and grasping (Zumel, 1997) also suggests that a potential en-

ergy landscape approach may be a plausible framework towards understanding

physical interaction. In these systems, robot-part contact is not only unavoid-

able, but also often involves continual collision (Peshkin and Sanderson, 1988;

Zumel, 1997; Krishnasamy, 1996; Mohri and Saito, 1994; Swanson, Burridge,

and Koditschek, 1995), which is similar to the intermittent animal- or robot-

environment contact during locomotor transitions. Although understanding

these interactions by solving equations of motion remained intractable, simpli-

fied quasi-static potential energy field models derived from first principles well

explained how the shape of robots and parts affected their physical interaction
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(Brost, 1992; Krishnasamy, 1996; Zumel, 1997). In addition, they also informed

planning strategies to achieve the desired alignment even with uncertainties

in part orientation, friction, and intermittent contact dynamics (Peshkin and

Sanderson, 1988; Brost, 1992; Zumel, 1997).

The success of these potential energy function-based methods in robotics fur-

ther suggests that a potential energy landscape approach, such as those posited

by Li et al., 2015 for beam traversal and Li et al., 2019 for self-righting, may

prove useful to understand how locomotor transitions emerge from physical in-

teraction of animals and robots with environment.

1.3.3 Difference from artificial potential field
approaches in robotics

Previously, artificial potential functions have been used for robot navigation

(Khatib, 1986; Rimon and Koditschek, 1992) and visual servoing (Cowan and

Koditschek, 1999). It was first proposed1 by Oussama Khatib, in the context of

robot arm collision avoidance. In this approach, the state of the robot is consid-

ered as moving in a field of forces. The goal state to be reached is an attractive

pole, and the obstacles to be avoided are repulsive surfaces for the robot. In

this method, the goal and obstacle exert virtual forces on the robot—i.e., as the

robot’s becomes closer to the obstacle, it experiences a virtual repulsive force

that pushes it away (closer the robot, larger the repulsion from obstacle) and

avoids collision (Figure 1.7A). In addition, the goal exerts a virtual attractive

force on the robot. The sum of attractive and repulsive potential field ideally

results in a potential field with a global minima at the goal state to which
1Although a 1979 article (Larcombe, 1979) fleetingly mentions the possibility of using

repulsive potential fields for robot navigation, no analysis was reported
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the robot state is attracted while avoiding obstacles. By choosing the closed

form-expression for attractive and repulsive forces (and the associated potential

field), the robot motion can be controlled.

Rimon and Koditschek later proposed a new class of potential functions—

navigation functions (Rimon and Koditschek, 1992)—that not only finds a

collision-free path for the robot, but also specifies a feedback controller for the

robot. Navigation functions are guaranteed to bring a bounded-torque actu-

ated robot to a desired state while avoiding obstacles in a known and stationary

environment (Figure 1.7B). Navigation functions have also been used for occlu-

sion avoidance during vision-based control of rigid body motion (Figure 1.7C)

(Cowan and Koditschek, 1999; Cowan, Lopes, and Koditschek, 2000).

Here, the choice of artificial potential (Khatib, 1986) or navigation func-

tion (Rimon and Koditschek, 1992) are not necessarily directly related to the

system potential energy. However, the potential energy functions used in the

approaches mentioned in Section 1.3.2 and those proposed previously in Li et

al., 2015 and Li et al., 2019 are derived from first principles using a simplified

physics model.

1.3.4 Insights from potential energy landscapes in
previous studies of beam traveral and self-righting

Previous studies of beam obstacle traversal (Li et al., 2015) and self-righting (Li

et al., 2019) used simple physics models to obtain the system potential energy

(Figures 1.8A, 1.9A-C) and visualize the potential energy landscape (Figures

1.8B, 1.9D). Despite the simplicity of the physics models, the potential energy

landscape posited possible explanations for some of the observations in beam
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Figure 1.7: Potential field approaches in robotics. (A) A repulsive potential
function around an obstacle. (B) An exact navigation function. (C) Simulated
visual servoing of a rigid cube using a navigation function-based controller.
Image credits: (A) Reproduced from Khatib, 1986, (B) Reproduced from Rimon
and Koditschek, 1992, (C) Reproduced from Cowan, Lopes, and Koditschek,
2000.
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Figure 1.8: Minimal potential energy landscape of flexible beam traversal.(A)
Simplified physics model to calculate system potential energy. (B) Potential
energy landscape in the space of forward (X) and lateral (Y ) body center of
mass position. Colored arrows indicate hypothesized systems state trajectories
on landscape. Roll mode (red arrow) overcomes lower barrier on landscape
during traversal compared to climb mode (green arrow). Deflect mode (black
arrow) does not result in traversal. Reproduced from (Li et al., 2015).

obstacle traversal and self-righting. For example, a minimal landscape for beam

traversal (Li et al., 2015; Figure 1.8) posited that when traversing the system

state on the landscape overcame lower barrier as for body rolling. In addition, it

provided insights into the shape-dependent locomotor–ground interaction dur-

ing movement in 3D, multi-component terrain; the model suggested that the

rounded ellipsoid body of the animal results in attractive lateral forces towards

the middle of the beams. Similarly, a potential energy landscape of a rigid ellip-

soid (Li et al., 2019; Figure 1.9) hypothesized that self-righting via body rolling

overcame lower potential energy barrier compared to that by body pitching.

While these landscapes provided initial qualitative explanations or hypothe-

ses, they had a few shortcomings. In both these simplified potential energy
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Figure 1.9: Static potential energy landscape of ground self-righting. (A-C) An
ellipsoid approximating the animal body in contact with the ground, pitching
(A), rolling (B) or rotating diagonally (simultaneous pitching and rolling; (D),
Potential energy landscape, shown as the center of mass height in the space of
body pitch and roll. Colored arrows indicate hypothesized system state trajec-
tories for body rotations of modes shown in (A)-(C) Reproduced from (Li et al.,
2019)

landscape models (Figures 1.8, 1.9), the systems potential energy depend on

more than two parameters. The previous beam traversal landscape was a min-

imal potential energy landscape; Li et al., 2015 simply calculated the minimal

potential energy over all rotational degrees of freedom for positions in the vicin-

ity of the beam obstacles. Similarly in self-righting landscape, the animal’s

wing opening, which substantially changes potential energy, is not considered.

Finally, neither of the previous studies investigated how the system state be-

haves on potential energy landscapes during physical interaction.
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1.3.5 Hypotheses

Having reasoned about the validity of using potential energy landscape ap-

proach, we present the hypotheses about beam obstacle traversal and self-

righting that we seek to resolve in this dissertation:

1. Macroscopic, far-from equilibrium locomotor transitions of beam traversal

and self-righting systems are barrier-crossing transitions on their evolving

potential energy landscapes.

2. When comparable to the potential energy barriers between basins, the

kinetic energy fluctuation during beam traversal and self-righting facilitate

escape from a landscape basin to make locomotor transitions.

3. When kinetic energy fluctuation is not sufficient to overcome barriers along

certain directions, altering the system configuration changes the landscape

and lowers the barriers to be comparable to the available kinetic energy

fluctuation, which then induces transition.

4. Physical interaction in some modes are easier (more favorable) than other

modes; locomotor-terrain system is more likely to transition to a more

favorable mode.

I emphasize that these hypotheses have only been speculated and not tested

in previous studies of beam traversal (Li et al., 2015) and self-righting (Li et al.,

2019).
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1.4 Approach

1.4.1 Integrative approach to bridge knowledge gap

Considering the challenges discussed in Section 1.3.2, studying physical interac-

tion during locomotor transitions may seem daunting at first, but we posit that

an interdisciplinary approach integrating biology, robotics, and physics will help

reveal physical principles by testing the hypotheses posed in Section 1.3.5. Such

an integrative approach has already begun to successfully advance the study of

locomotor-terrain interactions (terradynamics, (Li, Zhang, and Goldman, 2013;

Li et al., 2015); Figure 1.10), especially in granular media (see Goldman, 2014

for a review).

By creating controlled granular media testbeds, robotic physical models, and

theoretical and computational models, recent studies elucidated how animals,

and how robots should use physical interaction with granular media to move

effectively both on and within sandy terrain. The general physical principles

(Goldman, 2014) and predictive physics models (Goldman, 2014; Li, Zhang, and

Goldman, 2013) not only advanced understanding of functional morphology

(Li, Hsieh, and Goldman, 2012; Maladen et al., 2011; Sharpe et al., 2015),

muscular control (Ding et al., 2013; Sharpe, Ding, and Goldman, 2013), and

evolution (McInroe et al., 2016) of animals, but also led to new design and

control strategies (Aguilar et al., 2016; Goldman, 2014; Li et al., 2009; Li et al.,

2010; Marvi et al., 2014; Shrivastava et al., 2020) that enabled a diversity of

robots to traverse granular environments.

Such an integrated approach offers several advantages. Observations of

model organisms inspire robot design and action strategies (Ijspeert, 2014;
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Figure 1.10: Integrative approach to understand physical interaction of animals
and robots with their environment. Modified from Othayoth et al., 2021b; image
courtesy of Chen Li.

Saranli, Buehler, and Koditschek, 2001; Teoh and Wood, 2013; Goldman, 2014;

Shrivastava et al., 2020). Simplified robots serve as physical models for testing

biological hypotheses or generating new ones and allow control and variation

of parameters to discover general principles (Long, 2012; Aguilar et al., 2016;

Aydin et al., 2019; Gravish and Lauder, 2018). In addition, they enact the laws

of physics instead of those prescribed by a model (Long, 2012).Finally, physical

principles and predictive models (Dickinson, Lehmann, and Sane, 1999; Blick-

han and Full, 1993; Lauder and Drucker, 2002; Li, Zhang, and Goldman, 2013)

22



from this empirical approach provide mechanistic explanations for animal loco-

motion (Dickinson, Lehmann, and Sane, 1999; Kuo, 2007; Daley and Biewener,

2006; Birn-Jeffery et al., 2014; Lauder and Drucker, 2002) and design tools and

action strategies for robots (Teoh and Wood, 2013; Shrivastava et al., 2020; Zhu

et al., 2019; Li et al., 2009; Marvi et al., 2014).

Inspired by these successes, we will adopt a similar integrative approach

by integrating biological, robotic, and physics studies of beam traversal and

self-righting to understand how locomotor transitions emerge from physical in-

teraction of animals and robots with their environment.

1.4.2 Rationale for studying physical interaction of
animals and robots with enviornment

Locomotion in biological systems emerges (Dickinson et al., 2000; Anderson,

1972) not just from physical interaction with the environment; animals can

also sense and adjust their mechanical interaction in response to the sensed

information via feedback, both neural and mechanical (Dickinson et al., 2000)

(Figure 1.11). For example, when fetching balls, a dog adjusts its running speed

and direction based on the sensory information from its eyes.

In this dissertation, I focus on understanding physical interaction, which

will provide a foundation for understanding sensory feedback control. This ap-

proach is inspired from early studies of aerodynamics of passive airfoils (Cayley,

1876), and recent studies of using robotic physical models to understand ani-

mals (Koehl, 2003; Long, 2012; Ijspeert, 2014; Aguilar et al., 2016; Aydin et al.,

2019; Gravish and Lauder, 2018). For example, although airfoils were extremely

simplified models of bird wings, these studies provided physics insights about
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Figure 1.11: Neuromechanical feedback during locomotion. Neural sensory feed-
back (blue lines) is minimal during rapid bandwidth-limited locomotion. Image
modified from Dickinson et al., 2000.

flight control, which were lacking in detailed anatomical studies and observa-

tion of birds at the time (Lindhe Norberg, 2002). Similarly, over the last three

decades, such an approach of studying simplified physical models of physical

interaction in air (Ellington et al., 1996; Dickinson, Lehmann, and Sane, 1999),

water (Koehl, 2003; Ijspeert, 2008; Lauder, Flammang, and Alben, 2012), flat

ground (Raibert, 1986), and flowable ground (Goldman, 2014; Aguilar et al.,

2016; Aydin et al., 2019) has advanced our understanding of animals and robot

locomotion (Dickinson et al., 2000).

Inspired by the success of this approach in previous studies, we follow a simi-

lar approach here by studying not just the animal, but also its simplified robotic

model and comparing them to gain physical insights and develop physics models

(Long, 2012; Ijspeert, 2014; Aguilar et al., 2016; Aydin et al., 2019). To make

meaningful comparison with the feedforward-controlled robots with no sensory

feedback, we study locomotor transitions of the animal during escape and self-

righting emergency responses, where there is significant bandwidth limit on

24



sensory feedback (Sponberg and Full, 2008) due to delays in neuronal transmis-

sion (Figure 1.11). Finally, to begin to quantify sensory feedback and physical

interaction over large spatiotemporal scales, we develop methods to track and

reconstruct the motion of cockroach body and antennae using a previously de-

veloped terrain treadmill.
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1.5 Organization of Chapters

• Chapter 2 details the biological, robotic, and physics studies of physical

interaction during beam traversal.

• Chapter 3 details the biological, robotic, and physics studies of physical

interaction during self-righting on flat ground.

• Chapter 4 describes methods to track and analyze animal kinematics dur-

ing movement on a terrain treadmill over large spatiotemporal scales.

• Chapter 5 summarize the research results reported in Chapters 2-4 and

their implications and possible future directions.
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Chapter 2

Kinetic energy fluctuation from
oscillatory self-propulsion
facilitates barrier-crossing
locomotor transitions during
beam traversal

This chapter is a published paper by Ratan Othayoth, George Thoms, and Chen

Li in The Proceedings of the National Academy of Sciences (2020) (Othayoth,

Thoms, and Li, 2020).

2.1 Summary

Effective locomotion in nature happens by transitioning across multiple modes

of locomotion such as walking, running, and climbing). Despite this, far more

of our mechanistic understanding of terrestrial locomotion has been on how to

generate and stabilize around near-steady-state movement in a single mode.

We still know little about how locomotor transitions emerge from physical in-

teraction with complex terrain. Consequently, mobile robots largely rely on
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geometric maps to avoid obstacles, not traverse them. Recent studies revealed

that locomotor transitions in complex 3-D terrain occur probabilistically via

multiple pathways (Li et al., 2015). Here, we show that an energy landscape

approach elucidates the underlying physical principles. We discovered that lo-

comotor transitions of animals and robots self-propelled through complex 3-D

terrain correspond to barrier-crossing transitions on a potential energy land-

scape. Locomotor modes are attracted to landscape basins separated by poten-

tial energy barriers. Kinetic energy fluctuation from oscillatory self-propulsion

helps the system stochastically escape from one basin and reach another to

make transitions. System’s escape from a landscape basin is more likely to-

wards lower barrier direction. These principles are surprisingly similar to those

of near-equilibrium, microscopic systems. Analogous to free energy landscapes

for multi-pathway protein folding transitions, our energy landscape approach

from first principles is the beginning of a statistical physics theory of multi-

pathway locomotor transitions in complex terrain. This will not only help un-

derstand how the organization of animal behavior emerges from multi-scale

interactions between their neural and mechanical systems and the physical en-

vironment, but also guide robot design, control, and planning over the large, in-

tractable locomotor-terrain parameter space to generate robust locomotor tran-

sitions through the real world.

2.2 Author contributions

Ratan Othayoth designed study, developed robotic physical model, performed

animal and robot experiments, analyzed data, developed energy landscape model,
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wrote and revised the paper; George Thoms developed robotic physical model

and performed preliminary robot experiments; Chen Li designed and oversaw

study, defined analyses, and wrote and revised the paper.
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2.3 Introduction

To move about in the environment, animals can use many modes of locomo-

tion (e.g., walk, run, crawl, climb, fly, swim, jump, burrow) (Alexander, 2006;

Biewener, 2003; Dickinson et al., 2000) and must often transition across them

(Lock, Burgess, and Vaidyanathan, 2013; Low et al., 2015) (e.g., Figure 1.2A).

Despite this, far more of our mechanistic understanding of terrestrial locomotion

has been on how animals generate (Blickhan and Full, 1993; Goldman et al.,

2006; Hu et al., 2009; Kuo, 2007; Li, Hsieh, and Goldman, 2012) and stabi-

lize (Biewener and Daley, 2007; Couzin-Fuchs et al., 2015; Revzen et al., 2013)

steady-state, limit-cycle-like locomotion using a single mode.

Recent studies begin to reveal how terrestrial animals transition across loco-

motor modes in complex environments. Locomotor mode transitions, like other

animal behavior, emerge from multi-scale interactions of the animal and exter-

nal environment across the neural, postural, navigational, and ecological levels

(Berman, 2018; Brown and Bivort, 2018; Nathan et al., 2008). At the neural

level, terrestrial animals can use central pattern generators (Ijspeert, 2008) and

sensory information (Blaesing, 2004; Kohlsdorf and Biewener, 2006; Ritzmann

et al., 2012) to switch locomotor modes to traverse different media or overcome

obstacles. At the ecological level, terrestrial animals foraging across natural

landscapes switch locomotor modes to minimize metabolic cost (Shepard et al.,

2013). At the intermediate level, terrestrial animals also transition between

walking and running to save energy (Bramble and Lieberman, 2004). However,

there remains a knowledge gap in how locomotor transitions in complex terrain

emerge from direct physical interaction (i.e., terradynamics (Li, Zhang, and
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Goldman, 2013)) of an animal’s body and appendages with the environment.

In particular, we lack theoretical concepts for thinking about how to generate

and control locomotor transitions in complex terrain that are on the same level

of limit cycles for single-mode locomotion (Holmes et al., 2006). For example,

locomotion in irregular terrain with repeated perturbations is rarely near steady

state and requires an animal to continually modify its behavior, which cannot

be well described by limit cycles (Spagna et al., 2007; Sponberg and Full, 2008).

Understanding of how to make use of physical interaction with complex ter-

rain (environmental affordance (Gibson, 2014; Roberts, Koditschek, and Mirac-

chi, 2020)) to generate and control locomotor transitions is also critical to ad-

vancing mobile robotics. Similar to personal computers decades ago, mobile

robots are on the verge of becoming a part of society. Some robots (e.g., robot

vacuums, self-driving cars) already excel at navigating flat surfaces, by transi-

tioning across driving modes (e.g., forward drive, U-turn, stop, park (Thrun,

2010)) to avoid sparse obstacles using a geometric map of the environment

(Latombe, 2012). However, many critical applications, such as search and rescue

in rubble, inspection and monitoring in buildings, extraterrestrial exploration

through rocks, and even drug delivery inside a human body, require robots to

transition across diverse locomotor modes to traverse unavoidable obstacles in

complex terrain (Hu et al., 2018; Lock, Burgess, and Vaidyanathan, 2013; Low

et al., 2015) (Figure 1.2B)). Yet, terrestrial robots still struggle to do so ro-

bustly (Guizzo and Ackerman, 2015), because we do not understand well how

locomotor transitions (or lack thereof) emerge from physical interaction with

complex terrain.

Our study is motivated by recent observations in a model system of insects
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Figure 2.1: A cockroach transitioning (orange arrow) from pitch to roll mode
to traverse grass-like beam obstacles.Reproduced from Othayoth, Thoms, and
Li, 2020.

traversing complex 3-D terrain. The discoid cockroach, native to rainforest floor,

can traverse flexible, grass-like beam obstacles using many locomotor modes,

stochastically transitioning across them via multiple pathways (Li et al., 2015).

For simplicity, hereafter we focus on the transition between two modes. The

animal often first pushes against the beams, and beam elastic restoring forces

lead the animal body to pitch up (Figure 2.1), blue). After this, though, the

animal rarely pushes across (3% probability) but often rolls (Figure 2.1), red)

to maneuver through beam gaps (45% probability). We define these as “pitch”

and “roll” modes. Note that we use “locomotor mode” here in the general

sense, not confined to limit-cycle locomotor behavior. The pitch mode is more

challenging than the roll mode because the animal has to lift its weight and

deflect the beams more (this is only true when beams are stiff, though; see

Results). Thus, the animal appears to statistically transition from less to more
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favorable modes. In addition, the animal’s body oscillates as its legs continually

push against the ground when trying to traverse. Besides in obstacle traversal,

similar multi-pathway locomotor transitions, preference of some modes over

others, and seemingly wasteful body oscillation were observed in self-righting of

insects (Li et al., 2019).

In the field of protein folding, adopting a statistical physics view and using

an energy landscape approach led researchers to recognize that proteins fold

via multiple pathways and understand the physical principles (Dill et al., 2008;

Onuchic and Wolynes, 2004; Wales, 2003). These near-equilibrium, microscopic

systems statistically transition from higher to lower energy states (local minima)

on a free energy landscape (increasing thermodynamic favorability). Thermal

fluctuation helps the system stochastically cross energy barriers at transition

states (saddle points between local minimum basins). These physical principles

operating on a rugged landscape leads to the multi-pathway protein folding

transitions. Inspired by the seeming similarities of our system to them, we con-

tend that an energy landscape approach helps understand how self-propelled,

far-from-equilibrium macroscopic animals’ and robots’ probabilistic locomotor

transitions in complex 3-D terrain emerge from physical interaction, whose equa-

tions of motion are unknown or intractable (Aguilar and Goldman, 2016; Han

et al., 2021). Specifically, we hypothesize that:

1. The self-propelled system’s state is attracted to a local minimum basin

on a potential energy landscape; locomotor transition from one mode to

another can be viewed as the system state escaping from one basin and

settling into another. (What governs transition?)
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2. When it is comparable to the potential barrier, kinetic energy fluctuation

from oscillatory self-propulsion helps the system escape from a landscape

basin to make locomotor transitions. (When does transition happen?)

3. Escape from a basin is more likely towards a direction along which the

escape barrier is lower. (How does transition happen?)

To begin to establish an energy landscape approach of locomotor transitions

across modes in complex 3-D terrain, we tested these hypotheses for the two

representative modes (pitch and roll) of the model body-beam interaction sys-

tem defined above. Although the previous study introduced an early energy

landscape model to qualitatively explain why locomotor shape affected physi-

cal interaction and thus locomotion (Li et al., 2015), none of these hypotheses

were proposed or tested. We emphasize that our potential energy landscape

directly arises from locomotor-terrain interaction physics using first principles.

This is unlike artificially defined potential functions to explain walk-to-run tran-

sition (Diedrich and Warren, 1995) and other non-equilibrium biological phase

transitions (Kelso, 2012), or metabolic energy landscapes inferred from oxygen

consumption measurements to explain behavioral switching of locomotor modes

(Shepard et al., 2013).

Because animal locomotion emerges from complex interactions of neural and

physical mechanisms (Dickinson et al., 2000), to observe the outcome of pure

physical interaction, we developed and tested a minimalistic robotic physical

model (Figure 2.2)) with feedforward control. The robot had an ellipsoid-like

body that was propelled forward at a constant speed and was free to pitch and

roll (achieved through a gimbal mechanism) in response to interaction with two
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Figure 2.2: Robotic physical model. Reproduced from Othayoth, Thoms, and
Li, 2020.

beams. The body was constrained not to yaw or move laterally to simplify en-

ergy landscape modeling. We also performed experiments with the discoid cock-

roach traversing beams during escape response to study how physical interaction

affects the animal’s locomotor transitions when neural control is bandwidth lim-

ited (Dickinson et al., 2000). Comparison of robot and animal observations can

reveal aspects of the transitions that likely involve neural mechanisms.

To test the first hypothesis, in both robot and animal experiments, we used

rigid “beams” with torsional joints at the base (Figures 2.3,2.4,2.5,2.6) as one-

degree-of-freedom 3-D terrain components to generate a simple potential energy

landscape. We then reconstructed the potential energy landscape and 3-D mo-

tion of the robot or animal body and beams in high accuracy (as opposed to
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visual examination reported in the previous study (Li et al., 2015)) (Figures

2.14, 2.15) for the entire traversal. This allowed us to quantify how the system

state behaved on the landscape during each observed locomotor mode and tran-

sition between modes. To test the second hypothesis, for the robot, we applied

controlled oscillation with variable frequency f to vary kinetic energy fluctua-

tion (Figure 2.10). Because we could not vary the animal’s naturally occurring

body oscillation, in animal experiments we changed the barrier relative to ki-

netic energy oscillation by varying beam torsional joint stiffness K by over an

order of magnitude in the range of natural flexible terrain elements (Table ??).

K was also varied by over an order of magnitude for robot experiments and,

together with animal experiments, helped elucidate how transition depended on

terrain properties. Because the potential energy landscape consists of not only

beam elastic energy but also body and beam gravitational energy, variation of

K also changed how escape barrier compared in different directions, allowing

the third hypothesis to be tested. See Methods and Supplementary Methods

for technical detail and Table 2.1 for sample sizes.
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2.4 Methods

2.4.1 Robotic physical model

To approximate the body shape of the discoid cockroach (Li et al., 2015), we

3-D printed an ellipsoid-like body, PLA plastic using UPBOX+, Tiertime, CA,

USA), whose top and bottom halves were slices of an ellipsoid. The body

was suspended (center of mass at 10 cm above the ground) via a custom gimbal

mechanism that allowed free body pitching and rolling (Figure 2.3A). We added

mass to the body so that it is bottom heavy, with body center of mass at 1.1

cm below the pitch axis and 1.6 cm below the roll axis. Body pitch and roll at

static equilibrium for a freely suspended body without beam contact were near

zero (pitch = 3.3◦ ± 0.4◦, roll = 1.7◦ ± 0.8◦; note that positive pitch is pitching

downward). See Table 2.1 for geometric dimensions and physical properties of

the body.

We used a linear actuator (Firgelli FA-HF-100-12-12, Firgelli Automation,

WA, USA) to propel the body forward towards the obstacles. To introduce

body kinetic energy fluctuation, we oscillated the body vertically using two

DC servo motors (XM430-W350T, Dynamixel, CA, USA) via a five-bar linkage

mechanism 3-D printed from PLA plastic (UPBOX+, Tiertime, CA, USA). We

varied kinetic energy fluctuation by varying oscillation frequency. Our prelimi-

nary experiments showed that body oscillation along different directions did not

qualitatively affect the outcome. Thus, we chose vertical oscillation to better

observe response in body pitch and roll.

The body oscillated vertically along the following triangular wave trajectory
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Figure 2.3: Design of robotic physical model and rigid beams with torsional
springs at base. (A) Photo of robot body and beams. Body is propelled for-
ward at a constant speed (white arrow) and can be oscillated vertically (yellow
arrows). Body can freely pitch and roll in response to interaction with beams.
(B) CAD model of body, showing design of pitch and roll joints and axes. Body
center of mass is below geometric center due to added weight. Pitch (blue) and
roll (red) axes cross geometric center. (C) CAD model of beam base, showing
design of torsional joint. Rigid beams rotate about an axis parallel to y-axis
(yellow arrow). K is varied by using different combinations of soft (red) and
stiff (cyan) springs. Reproduced from Othayoth, Thoms, and Li, 2020.

38



(fitted from the measured z position):

z = z0 + Aft+N(µ, σ), 0 ≤ t ≤ T

2 (2.1)

z = z0 + A(1 − ft) +N(µ, σ), T

2 < t ≤ T (2.2)

where z is the vertical position of the body geometric center, f is vertical os-

cillation frequency, T = 1/f is vertical oscillation period, A = 23.4 mm is the

vertical oscillation amplitude, and z0 = 102.4 mm is the average vertical posi-

tion when there is no oscillation. To prevent the body from being stuck against

beams due to friction, we added a small noise, N , which is normally distributed

with a mean of µ = 0.7 mm and a standard deviation of σ = 1.2 mm. Kinetic

energy fluctuation from this noise was small compared to that from the ver-

tical oscillation. The vertical oscillation induced small lateral oscillation (12%

of vertical oscillation amplitude). The motor angles were commanded using a

microcontroller (Open CM 0.94, Robotis, CA, USA). We note that the animal’s

body oscillation is much more complex, variable, and less periodic than the

robot’s. It was difficult to use a wave oscillation with well-defined amplitude

and frequency to approximate it.
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Table 2.1: Geometric dimensions, physical properties, and sample sizes for animal and robot experiments.

Animal Robot
Number of Individuals 6 N/A

Body

Mass mbody (g) 2.6 ± 0.3 233
Length (cm) 5.3 ± 0.1 22.1
Width (cm) 2.4 ± 0.1 15.8

Thickness (cm) 0.8 ± 0.1 5.8

Beam

Lateral spacing(cm) 1.0 12.7
Width (cm) 1.0 2.8

Mass mbeam (g) 0.33 0.42 0.63 0.70 1.03 38
Inner layer thickness (mm) 0.04 0.05 0.07 0.10 0.25 N/A

Total thickness (mm) 0.54 0.55 0.72 0.75 0.85 6
Length L (cm) 5.7 8.8 8.7 8.6 9.3 18

Torsional stiffness K (mN·m/rad) 0.1 0.2 0.7 1.7 11.4 28 55 255 344

Sample size No. of trials

Ind. 1 11 10 9 11 10 0 Hz 10 10 10 10
Ind. 2 10 10 10 7 10 1 Hz 10 10 10 10
Ind. 3 11 10 10 11 11 2 Hz 10 10 10 10
Ind. 4 13 10 11 11 13 3 Hz 10 10 10 10
Ind. 5 10 10 10 12 10 4 Hz 10 10 10 10
Ind. 6 9 10 10 10 10 5 Hz 10 10 10 10
Total 64 60 60 62 64 6 Hz 10 10 10 10

Total no. of trials 310 280

All data averages are mean ± s.d. mbeam is the mass of one beam.
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Figure 2.4: Robot beam stiffness characterization. Beam restoring torque as a
function of bending angle ∆θ(defined in Figure 2.3C). Red and cyan curves are
data for soft and stiff spring. Dashed lines are linear fits (through the origin) of
data of each K, whose slope give K. (B) K for different combinations of springs
used (mean ± s.d., n = 3 springs, 3 loading cycles each). Reproduced from
Othayoth, Thoms, and Li, 2020.

2.4.2 Robot beam obstacles

For robot experiments, we mounted two rigid acrylic plates to a fixed base

(Figure 2.3A) vertically using 3-D printed joints with torsional springs (Figure

2.3). We varied K by using different combinations of soft and stiff torsional

springs (McMaster Carr, NJ) (Figure 2.3C, red and cyan) in parallel. The rigid

beams were laser cut from acrylic plates (VLS60, Universal Laser & McMaster-

Carr, NJ, USA). We covered the beam edges using smooth plastic straw (6 mm

diameter) to reduce friction between them and the body during interaction.

We characterized torsional stiffness of the stiff and soft torsional springs by

measuring the restoring torque about the torsional joint as a function of joint

deflection angle (Figure 2.4A) using a 3-axis force sensor (Optoforce OMD-20-

FG, OnRobot, Denmark). Torsional stiffness was calculated from the slope of

the linear fit (across the origin) of torque as a function of deflection angle (Figure
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2.4B). By combining the stiff and soft torsional springs, we varied K by over an

order of magnitude ([28, 55, 255, 344] mN·m/rad). See Table 2.1 for geometric

dimensions and physical properties of the beams.

2.4.3 Robot experiment imaging

Robot experiments were recorded using three synchronized high-speed cameras

(IL5, Fastec Imaging, San Diego, CA) at 200 frames s−1 and a resolution of

1920 × 1080 pixels. To automatically track the body and beams over the entire

range of rotation, we attached BEEtags (Crall et al., 2015) (18 mm × 18 mm) on

the body (9 markers), vertical oscillation transmission (3 markers), right beam

(2 markers), and left beam (5 markers). We used FasMotion software (Fastec

Imaging, San Diego, CA) to save the videos to storage drives after recording for

tracking and processing.

2.4.4 Robot experiment protocol

Before each trial, the body was positioned at a distance of 11 cm from the

beams, and the beams were set to be vertical. We started video recording and

body oscillation (for f > 0), waited for 1 s, and then propelled the body forward

at a constant speed of 0.7 cm·s−1 by a distance of 30 cm (maximum possible

by the linear actuator). Body oscillation was applied (for f > 0) until the end

of forward translation. After forward translation completed, we stopped body

oscillation and video recording and moved the body to its initial position for

the next trial.

At each K, we varied kinetic energy fluctuation by varying f from 0 Hz to 6

Hz with an increment of 1 Hz. At each K and each f , we performed 10 trials.
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This resulted in a total of 280 trials, with 70 trials at each K across all f . See

Table 2.1 for detailed sample size.

2.4.5 Animals

We chose to study the discoid cockroach, Blaberus discoidalis, because it dwells

on the floor of tropical rainforests with dense vegetation and litter and excels

at traversing complex terrain (Li et al., 2015). We used adult male discoid

cockroaches (Pinellas County Reptiles, St Petersburg, FL, USA), as females are

often gravid and under different load bearing conditions. Prior to experiments,

we kept the cockroaches in individual plastic containers at room temperature

(24 ◦C) on a 12h:12h light:dark cycle. See Table 2.1 for dimensions and mass

of the animals tested.

2.4.6 Animal beam obstacles

We custom made rigid “beams” with torsional springs at the base (Figure 2.5A).

For each beam, we sandwiched a flexible layer between two stiff layers and ex-

posed a small portion of the flexible layer (Figure 2.5B), which acted as torsional

spring joint about which the beams deflect in the x − z plane. We varied the

thickness of the flexible layer ([0.04, 0.05, 0.07, 0.10, 0.25] mm) to vary the

torsional stiffness K of the torsional joint by over two orders of magnitude ([0.1,

0.2, 0.7, 1.7, 11.4] mN·m/rad) in a similar range as natural obstacles like leaves,

stalks, and grass. Polyethylene terephthalate plastic (McMaster Carr, NJ, USA)

and cardstock (0.2 mm thickness, Neenah Inc., GA, USA) were used for the flex-

ible and stiff layers and bonded using thermally bonding glue (Therm-O-Web,

IL, USA) and a laminating machine (AmazonBasics, Amazon). The layer of
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Figure 2.5: Design of rigid beams with torsional springs at base for animal
experiments.(A) Photo of a layer of animal beams. Inset shows a closer view
of torsional joint. (B) Side view schematic of beam design following (Haldane
et al., 2015). Stiff outer layers (black) provide rigidity, and a small exposed
section of flexible inner layer (blue) acts as a torsional spring joint. Dimensions
not true to scale. Reproduced from Othayoth, Thoms, and Li, 2020.

10 beams was laser cut (VLS60, Universal Laser Systems, AZ, USA) to have

identical geometry and spacing.

We characterized K by measuring the restoring torque about the torsional

joint as a function of beam deflection angle (Figure 2.6A) using a 6-axis force

and torque sensor (Nano 43, ATI Industrial Automation, NC, USA). K was cal-

culated from the slope of the linear fit (across the origin) of torque as a function

of deflection angle (Figure 2.6B). See Table 2.1 for geometric dimensions and

physical properties of the beams.

2.4.7 Animal multi-camera imaging arena

We constructed an arena for animal experiments to measure locomotor transi-

tions (Figure 2.7). Previous studies showed that animals often laterally explored

beam obstacles before traversing (Li et al., 2015). To increase experimental

yield, we used 10 identical beams in an obstacle layer, which presented nine
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Figure 2.6: Characterization of rigid beams with torsional springs at base for
animal experiments. (A) Beam restoring torque as a function of bending angle
for different flexible layer thickness ([0.04, 0.05 0.07, 0.10, 0.25] mm). Dashed
lines are linear fits (through the origin) of data, whose slopes give K. (B) K as a
function of flexible layer thickness (mean ± s.d., n = 62, 37, 76, 38, 32 loading
cycles). Reproduced from Othayoth, Thoms, and Li, 2020.

gaps of 1 cm (narrower than animal body width of 2.4 cm, but larger than body

thickness of 0.8 cm) for the animal to traverse. All the beams were vertical

without external force from the animal. The beam obstacle layer was inserted

into a slit cut in the flat ground between two transparent sidewalls made of

acrylic sheets. A runway funneled the animal towards the middle of beam ob-

stacle layer to minimize the interaction with the sidewall. To facilitate traversal

with minimal body yaw (on average), we arranged the beam obstacle layer to

be perpendicular to the direction of animal movement. The reduced body yaw

allowed us to more accurately visualize how trials evolved on the potential en-

ergy landscape (see section below), which was calculated using the average body

yaw from all trials. Paper cardstock covered the ground surface. We placed a

dark shelter with food and water on the exit side of the obstacle layer for the

animal to rest after each trial.
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Figure 2.7: Animal locomotion arena with a layer of beam obstacles (green),
with seven high-speed cameras. x, y,z axes show lab frame. Reproduced from
Othayoth, Thoms, and Li, 2020. CAD model courtesy of Yaqing Wang.

Animal experiments were recorded using seven synchronized high-speed cam-

eras (N5A-100, Adimec, Netherlands) at 100 frames s−1 and a resolution of 2592

× 2048 pixels. When interacting with the obstacles, animal body orientation

varied substantially. We carefully positioned the cameras around the entire

arena to cover the entire rotation range of motion, with two from back views,

two side views, two isometric views, and one top view (Figure 2.7A). We used

the StreamPix software (Norpix Inc., Montreal, Canada) to automatically save

the videos to storage drives as they were being recorded, after which they were

converted to AVI format for tracking and processing.

To automatically track the animal and beams, we attached a 7 mm × 7 mm

BEEtag (Crall et al., 2015) to the animal body and 9 mm × 9 mm BEEtags

to the top and bottom ends of both sides of each beam (Figure 2.8). The
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Figure 2.8: Snapshot of animal traversing beam obstacles (view from the shaded
camera in Figure 2.7). Markers are attached to the animal body and beams to
track their 3-D motion (yellow and magenta trajectories). Red, green, blue axes
show body frame attached to markers. Reproduced from Othayoth, Thoms,
and Li, 2020.

animal BEEtag was much lighter (< 0.15 g) than the animal itself (2.6 g).

It was printed onto a rounded oval cardboard to minimize interference with

the obstacle traversal and attached to the dorsal surface of the abdomen using

ultraviolet curing glue (Bondic, Aurora, Canada).
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2.4.8 Animal experiment protocol

Before the experiment, the arena was illuminated and heated to about 43◦C with

six work lamps (Coleman Cable, Waukegan, IL, USA). Before each trial, the

animal was placed in the starting end of the arena and allowed to settle down.

We then started video recording and probed the animal with a stick with a soft

tip (made from paper tapes) to induce it to run towards the obstacles. The

animal did not always immediately traverse after running into beam obstacles.

Instead, it often made multiple failed attempts to traverse and sometimes ex-

plored the obstacle layer laterally to attempt traversing at different beam gaps,

before eventually traversing. Once the animal traversed and reached the shel-

ter, we stopped video recording and allowed the animal to rest for ∼10 minutes

before the next trial.

We tested six animal individuals and beams of five different torsional stiffness

K and collected a total of 337 trials. The same six individuals were tested across

all K. We discarded trials in which any of the following were observed: (1) the

animal did not move within 10 s after it was probed; (2) the animal moved back

to the starting area or did not attempt to traverse; (3) the animal used the

sidewall to traverse; or (4) the animal climbed up the beams and its body and

all six legs lost contact with the ground. This resulted in a total of 310 accepted

trials, with approximately 10 trials for each animal at each K. See Table 2.1 for

detailed sample size.
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2.4.9 High accuracy 3-D motion reconstruction

To calibrate the cameras over the working space for 3-D motion reconstruc-

tion, for both robot and animal experiments, we built a calibration object with

multiple markers (47 for robot and 17 for animal) using Lego bricks (The Lego

Group, Denmark). We then used the direct linear transformation software DLT-

cal5 (Hedrick, 2008) to obtain intrinsic and extrinsic camera parameters. We

used a custom MATLAB script to automatically track 2-D coordinates of the

markers in each camera view using the BEEtag code (Crall et al., 2015).

Using the tracked 2-D marker coordinates from multiple camera views and

camera calibration parameters, we obtained the 3-D position of the four corners

of each BEEtag markers using the direct linear transformation software DLTdv5

(Hedrick, 2008) , which was then used to obtain the marker frame (Figure 2.8).

For the animal, we translated and rotated the marker frame by the measured

translational (∆x = 10 mm, ∆y = −0.2 mm, ∆z = −3 mm) and rotational

(roll = 0◦, pitch = 10◦, yaw = 1◦) offsets to obtain 3-D position and orientation

of the body frame at the body geometric center, which nearly overlapped with

body center of mass (Kram, Wong, and Full, 1997). For the robot, we used a

CAD model of the body to determine the location of center of mass relative

to the markers fixed to the body. Depending on which body markers were

reconstructed in each video frame, we translated and rotated the reconstructed

marker frame by its measured translational and rotational offsets to obtain 3-D

position and orientation of the body frame at the center of mass. For both the

robot and animal, we used Euler angles (yaw α, pitch β, and roll γ, Z−Y ’−X”

Tait-Bryan convention) to define 3-D rotation. Note that with this convention,
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when the body pitches upward, pitch angle is negative.

To quantify the accuracy of 3-D reconstruction using BEEtag tracking com-

bined with Direct Linear Transformation, we 3-D printed a high-precision cal-

ibration object. The calibration object had nine BEEtag markers mounted on

a horizontal plate in a 3 × 3 grid with a 7 cm grid distance, each oriented

at a pitch and yaw angle of 0◦, 30◦, and 60◦. We measured the 3-D position

and orientation of each marker from 3-D reconstruction (described above) and

compared them to the designed values. This demonstrated that our imaging

setup achieved high accuracy in 3-D position and orientation reconstruction

(s.d. of position error = 0.6 mm; s.d. of orientation error = 1.1◦). We also ver-

ified that lens distortion was minimal (< 1%) using the checkboard distortion

measurement method.

For each trial, we calculated body translational (vx, vy, vz) and rotational

(ωα, ωβ, ωγ) velocities and beam deflection angles from vertical (∆θi) as a

function of time. Beam angle was averaged from visible tags on each beam.

Considering lateral symmetry, to simplify analysis of the roll mode, we flipped

all trials in which the body rolled left to rolling right. For the animal, we offset

the measured lateral positions (y) of each trial so that y = 0 in the middle of

the gap that the animal traversed during the final, successful attempt.

2.4.10 Definition of pitch and roll modes and
pitch-to-roll transition

We defined the robot to be in the roll mode if both beams lost contact with the

body and bounced back to vertical before the distal end of the body crossed

the beams (x = 0), and we defined it to be in the pitch mode otherwise. For
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the robot, body motion was highly repeatable from trial to trial, and pitch-to-

roll transition always resulted in a sharp decrease in system potential energy.

Thus, we defined transition to occur when system potential energy reached a

peak value (Figure 2.9E, vertical dashed line (ii)), after which it immediately

reduced.

We defined the animal to be in the roll mode if its body roll (absolute value)

exceeded 62◦, because from system geometry this was the minimal roll for the

body to move through the gap between two adjacent beams without deflecting

them. The animal was defined to be in pitch mode otherwise. For trials in which

the animal transitioned from the pitch to roll mode, we defined transitions to

occur when body roll (absolute value) exceeded 20◦ (Figure 2.9B, vertical dashed

line (ii)). We verified that system potential energy (Figure 2.9F) decreased at

this moment. See Section 2.4.14 for details of computing potential energy.

2.4.11 Data averaging

Because the robot was propelled forward at a constant speed, its 3-D kinematics,

potential energy, and kinetic energy were a function of body forward position

x. To obtain average 3-D kinematics and potential energy as a function of x,

we interpolated the measured position, orientation, and potential energy over x

and then averaged them across all trials at a given K. For the robot, we averaged

lateral position y and body yaw α for all the trials at each K for each x and

used this average trajectory of measured x, y, and α to calculate an average

potential energy landscape. For the animal, because of the high variability in y

and α, for simplicity we set both y and α to zero when calculating the average

potential energy landscape at each x.
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Figure 2.9: Representative motion of body and beams and system potential
energy during interaction and definition of traversal and pitch-to-roll transition.
(A, B) Body roll (red) and pitch (blue) as a function of time. (C, D) Left (red)
and right (blue) beam deflection angle as a function of time. (E, F) System
potential energy as a function of time. Data shown for a representative pitch-
to-roll transition at K = 255 mN·m/rad for robot and K = 0.7 mN·m/rad
for animal. For both the robot and animal, pitch-to-roll transition resulted in
a reduction in system potential energy. Note that negative pitch is the body
pitching head-up. Dashed lines (i) and (ii) are when body first contacts beams
and when pitch-to-roll transition occurs. Dashed line (iii) is when the robot’s
forward translation ends and when animal’s distal end crosses the beam (x
= 0). For details of computing system potential energy, see Section 2.4.14.
Reproduced from Othayoth, Thoms, and Li, 2020.
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Because we focused on the pitch-to-roll transition (see definition in the next

section), we considered only the animal’s final, successful attempt in which

such a transition may occur. For the final, successful attempt, we analyzed the

portion of the trial starting from five frames (0.05 s) before the animal’s head

contacted the beams (Figure 2.9, dashed vertical line (i)) to ten frames (0.1 s)

after the entire body crossed the obstacle layer (at x = 0, Figure 2.9, dashed

vertical line (iii)). Because the robot body was translated with a constant

forward speed and always crossed the beams, for it we analyzed the portion of

the trial starting from when the body first contacted the beams (Figure 2.9,

dashed vertical line (i)) until the end of forward translation (Figure 2.9, dashed

vertical line (iii)).

2.4.12 Kinetic energy fluctuation

For both the robot and animal, we defined body kinetic energy fluctuation as the

sum of kinetic energy due to translational and rotational velocity components

other than forward motion of the body (vy, vz, ωα, ωβ, ωγ). To calculate mo-

ment of inertia, we approximated the animal body as an ellipsoid with uniform

mass distribution, considering that legs only consist less than 15% of total mass

(Kram, Wong, and Full, 1997). For the robot, we calculated moment of inertia

from a CAD model of the body with accurate geometry and mass distribution.

For both the robot and animal, we calculated average kinetic energy fluc-

tuation from first beam contact (of the final successful attempt of each trial

for the animal) to when transition occurred using the trials in which the body

transitioned to the roll mode. This was because for the trials in which the body

was trapped in the pitch mode, it was difficult to define the onset of pitching as
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Figure 2.10: Kinetic energy fluctuation. (A) Kinetic energy fluctuation of robot
as function of f. *** indicates a significant dependence (ANOVA, P < 0.0001,
F = 520.99). (B) Kinetic energy fluctuation of animal as function of K. n.s.
indicate no significant difference (ANOVA, P = 0.3835, F = 0.9047). See Table
2.1 for sample size. Reproduced from Othayoth, Thoms, and Li, 2020.

can be readily done for the onset of rolling. Including these trials would add the

substantial kinetic energy of continuous body pitching that resulted from the

interaction, which was not part of the fluctuation that induced the transition.

We verified that kinetic energy fluctuation differed little between before contact

with the beams and from first contact to when transition occurred. We then

averaged kinetic energy fluctuation over time for each trial, from when the body

first contacted a beam (Figure 2.9, dashed line (i)) (in the final successful at-

tempt of each trial for the animal), to when it transitioned to roll mode (Figure

2.9, dashed line (ii)). For the robot, we then averaged these trial averages across

all trials at each f in which the robot transitioned to the roll mode to obtain
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average kinetic energy fluctuation at each f (Figure 2.10A). For the animal, we

averaged these trial averages across all trials at each K to obtain average kinetic

energy fluctuation at each K (Figure 2.10B).

2.4.13 Statistics

All probabilities were calculated relative to the total number of accepted trials

of each treatment. All average data are reported as mean ± s.d. For the robot,

we used a chi-square test to test whether pitch-to-roll transition probability

depended on K, with K and f as fixed factors. For the animal, we used a chi-

square test to test whether pitch-to-roll transition probability depended on K,

with K and individual as fixed factors and including their crossed effect. For the

robot, we used an ANOVA to test whether kinetic energy fluctuation increased

with f . To test whether the animal’s kinetic energy fluctuation depended on

K, we pooled data from all the trials in which pitch-to-roll transition occurred

(see section above for explanation) for each K and performed a mixed-effect

ANOVA with K as a fixed factor and individual as a random factor. We used

a Student’s t-test to test whether the robot’s system state was attracted to the

basin corresponding to the measured mode in all trials. All statistical tests were

performed using JMP Pro 13 (SAS Institute Inc., NC, USA).
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Figure 2.11: Potential energy landscape model, with definition of variables and
parameters. (A) Oblique view schematic of body (a rigid ellipsoid) and beams
(rigid rectangular plates with torsional joints at base) of torsional stiffness K.
Without body contact, both beams are vertical (light green). With body con-
tact, beams are deflected forward (dark green) by angles ∆θ1,2. (B, C) Side view
of model for robot (B) and animal (C) to show center of mass height changes
with body pitching and beam deflection. Solid and dashed ellipses show body
in static equilibrium and pitched-up, respectively. Center of mass of body and
beams are shown. Reproduced from Othayoth, Thoms, and Li, 2020.

2.4.14 Potential energy landscape

In energy landscape modeling, we approximated the animal body as a rigid

ellipsoid and obtained the robot body shape from a CAD model used for 3-

D printing the body. The beams were modeled as rigid rectangular plates on

torsional joints (Figure 2.11A). Because the beams had a finite mass, forward

deflection lowered beam center of mass and thus beam gravitational potential

energy. Because the measured beam restoring torque was nearly proportional to

deflection angle for both the robot (Figure 2.4B) and animal (Figure 2.6A), we

approximated the torsional joint at the base of each beam as a perfect Hookean

torsional spring and assumed that there was no damping. Because the body

only pushed forward against the beams, in the model we only allowed forward

beam deflection (∆θ1,2 ≥ 0).
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For robot modeling, we set center of mass to be below the pitch and roll

axes as measured (Figure 2.11B). For animal modeling, we constrained the

lowest point of the body to always touch the ground (ground constraint, Figure

2.11C), because the animal maintained ground contact during traversal (we

rejected trials in which the animal climbed onto the beams) and we neglected

the animal’s legs. Thus, for both the robot and animal, body pitching and

rolling in response to interaction with the beams increased center of mass height

and thus body gravitational potential energy. In addition, because the robot

was suspended from and driven forward by a linear actuator, its center of mass

height was constrained to move within a measured range of z = [9.9 cm, 11.8

cm]. Because the robot’s controlled vertical oscillation was modeled as part

of kinetic energy fluctuation, we used the average body center of mass vertical

position before contacting the beams (z = 10.8 cm, vertical height constraint)

to calculate its initial body potential energy. We verified that at any given x,

landscape shape remained similar within the z range in which the robot was

oscillated. For both the robot and animal, we offset system potential energy to

zero when the body was not in contact with beams and in its static equilibrium

(at zero pitch and zero roll) so system potential energy shown on the landscapes

were relative to this initial equilibrium (2.11B, C).

The full potential energy landscape depended on body orientation (pitch,

roll, yaw) and forward and lateral positions (x, y), given the vertical height and

ground constraints on the robot and animal, respectively. Because we focused

on body pitch and roll motions, for a given body position (x, y) and yaw,

we varied body pitch and roll over [−180◦, 180◦] to calculate system potential

energy landscape over pitch-roll space. In Figures 2.13B, 2.14, 2.15A, and 2.17A,
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we only show the landscape over a part of the entire pitch-roll space to better

focus on the pitch and roll basins. We then calculated beam deflection due to

body contact (only allowing ∆θ1,2 ≥ 0) and center of mass height increase (∆z)

to obtain system potential energy as below.

E = mbodyg∆z + 1
2mbeamgL(cos ∆θ1 + cos ∆θ2 − 2) + 1

2K(∆θ2
1 + ∆θ2

2) (2.3)

where where mbody is body mass, g is gravitational acceleration, ∆z is body

center of mass height increase from its equilibrium configuration (at near zero

pitch and zero roll), mbeam is beam mass, L is beam length, K is beam torsional

stiffness, and ∆θ1 and ∆θ2 are beam deflection angles from vertical.

We note that our landscape did not model body-beam interaction after the

beams bounced back.

2.4.15 Local minima and system state trajectories on
potential energy landscape

For each forward position x of the body relative to the beams, we examined

the landscape to determine the pitch and roll local minima and measured their

potential energies. Note that for the robot their potential energies did not

include height change due to controlled vertical oscillation (see section above).

To visualize how the measured state of the system behaved on the landscape,

we projected the measured body pitch and roll onto the landscape for each x

(Figure 2.14A, 2.15, 2.17A, blue and red dots for trials in which the system was

trapped in the pitch mode and transitioned to the roll mode), which formed

a system state trajectory over time as traversal progressed. Note that only

the end points of the trajectory, which represent the current state, showed
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the actual potential energy of the system at the corresponding x. The rest

of the visualized trajectory showed how body pitch and roll evolved but, for

visualization purpose, was simply projected on the landscape surface. Because

roll local minimum does not exist at K = 28 mN·m/rad for the robot, for

comparison with other K, we defined it to be at (pitch, roll) = (0◦, ±42◦) based

on the minimal body roll required to traverse without beam deflection.

2.4.16 Average potential energy landscape at each
beam stiffness

To facilitate observation of statistical trends, we calculated the average potential

energy landscape at each K and visualized all trials on it. Average landscape

calculation used the average measured lateral position y and body yaw for each

x. For the robot, this average potential energy landscape was a good approxima-

tion of the actual landscape for each trial, because the robot was constrained by

design to have minimal lateral motion or yawing. Despite this, when projected

onto the average potential energy landscape, in some trials at high K, a portion

of the system state trajectory appeared to momentarily go out of the pitch basin

and then re-entered it (Figure 2.15). This was an artifact from landscape aver-

aging. In those trials, the robot body experienced larger yawing due to a slight

lateral bending of the plastic pole that suspended the robot resulting from high

beam restoring forces. Because such trials are rare in the robot experiment, the

average landscape basin was close to that without body yawing. Examination

of the actual landscape for each robot trial (see Section 2.4.17) verified that the

state trajectory in the pitch mode was almost always in the pitch basin. For

the animal that freely moved laterally and yawed, the average landscape was a
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much poorer approximation of the actual landscape for each trial.

2.4.17 Percentage of trials in which system is attracted
to basin of observed mode on actual landscape

Because the average landscape did not account for trial-to-trial variation, to

better quantify how well the potential energy landscape explained the observed

locomotor modes, for both the robot and animal, we further calculated the ac-

tual (not averaged) potential energy landscape for each trial using the measured

position (x, y) and body yaw of that trial. We then counted the number of trials

in which the system state either stayed in the pitch basin or transitioned to the

roll basin, in accord with the locomotor mode observed, and we calculated the

percentage of trajectories attracted to the corresponding basin.

2.4.18 Energy barrier to escape from pitch local
minimum

We measured the potential energy barrier that must be overcome to escape

from the pitch local minimum. First, at each body forward position x, we con-

sidered imaginary straight paths away from the pitch local minimum (Figure

2.13B, iii, blue dot) in the full pitch-roll space ([−180◦, 180◦]), parameterized

by an angle Ψ relative to the negative pitch direction (body pitched up). Along

each imaginary straight path, we obtained a cross section of the potential en-

ergy landscape (Figure 2.13B, iii, inset). Then, we measured and defined the

maximal increase in potential energy in the cross section as the escape barrier

along this imaginary straight path, which was a function of Ψ, as shown by a
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polar plot (Figure 2.15B). Then, we calculated how escape barrier along differ-

ent directions away from pitch local minimum changed as traversal progressed

(increasing x). We defined pitch-to-roll transition barrier as the lowest escape

barrier, which occurred at the saddle point between pitch and roll basins. We

measured how pitch-to-roll transition barrier and the location of saddle point

in the pitch-roll space changed as x increased. For the robot, we calculated

pitch-to-roll transition barrier using the average landscape at each K. For the

animal, we used the average landscape with zero average lateral position and

body yaw for simplicity, considering its large trial-to-trial variation in lateral

position and body yaw.

2.4.19 Robot system state velocity directions

To measure the direction towards which the robot state trajectory was moving

in the pitch-roll space during transition, for each trial, we calculated the velocity

vector of the state trajectory in the pitch-roll space from the measured body roll

and pitch, low-pass filtered data using a sixth order Butterworth filter. Then,

we calculated the polar angle of this velocity vector relative to the pitch-roll

axes of the landscape. To focus on the transition, for each trial in which pitch-

to-roll transition occurred, we only considered the portion of the trial occurring

over the x range from start of beam contact to the onset of transition (Figure

2.9, vertical dashed lines (i)-(ii)). For trials in which pitch-to-roll transition

did not occur, we considered the portion of the trial within the average x range

where transition was observed at higher K (x = [−69, −39] mm). For each K,

we pooled data of trials in which the system was trapped in the pitch mode

and those in which the system transitioned to the roll mode to calculate their

61



respective distribution (polar histogram) of velocity directions (Figure 2.15D,

blue and red). We also measured the directions of the saddle point between the

pitch and roll basins and the local maximum along the pitch-up and pitch-down

directions, averaged over the x range in which transition was observed (Figure

2.15D, yellow and gray dashed lines).

2.4.20 Animal active body and limb adjustments

We observed high speed videos of animal experiments to search for evidence of

the animal using active adjustments to make transition. For each K, we counted

the percentage of trials in which the animal repeatedly flexed its head relative

to the body, differentially used its hind legs, or did both (Wang, Othayoth, and

Li, 2021).
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2.5 Results

Before encountering the beams, both the robot and animal moved forward with

a near horizontal body posture. After beam contact, both the robot and animal

started traversing by pushing against the beams, with the body pitched up. As

beam stiffness K increased, pitch-to-roll transition probability increased for both

the robot and animal (Figure 2.12; P < 0.0001, mixed-design chi-squared test).

At low beam torsional stiffness K, neither transitioned to the roll mode even

with body oscillation. At the highest beam torsional stiffness K, both always

transitioned, except for the robot without oscillation. In addition, for the robot

at high K (255 mN·m/rad), pitch-to-roll transition probability increased with

oscillation frequency f (Figure 2.12B) and thus with kinetic energy fluctuation

(Figure 2.10A). At the highest K tested (344 mN·m/rad), pitch-to-roll transition

probability reached one for all f > 0 tested. For simplicity, below we first

describe robot results followed by animal results.

We tested the first hypothesis–i.e, the self-propelled system state is attracted

to local minimum basins on a potential energy landscape–by reconstructing the

robot’s potential energy landscape and evaluating how its system state behaved

on the landscape (Figure 2.13). Using the measured physical and geometric

parameters of the body and beams, we calculated the robot’s system potential

energy (sum of body and beam gravitational energy and beam elastic energy)

as a function of body pitch, roll, and forward position x relative to the beams.

For simplicity, we first examine results at K = 255 mN·m/rad. Before the

body contacted the beams (Figure 2.13A, i), pitching or rolling increased body

gravitational energy (because body center of mass was below rotation axes,
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Figure 2.12: Pitch-to-roll transition probability of animal (A) and robot (B)
as a function of beam stiffness K . For robot, we varied oscillation frequency
f to vary kinetic energy fluctuation. *** indicates a significant dependence on
K (animal: mixed-effects chi-squared test, P < 0.0001, χ2 = 297.4; robot: chi-
squared test, P < 0.0001, χ2 = 247.1). n = 64, 60, 60, 62, 64 trials for animal
and n = 70 trials at each K for robot. Reproduced from Othayoth, Thoms, and
Li, 2020.

Figure 2.11). Thus, the potential energy landscape over body pitch-roll space

had a global minimum at zero pitch and zero roll, i.e., when the body was

horizontal (Figure 2.13B, i). As the body moved closer and interacted with the

beams (Figure 2.13A, ii, iii), the global minimum evolved into a “pitch” local

minimum at a finite pitch and zero roll (Figure 2.13B, ii, iii, blue). Meanwhile,

two “roll” local minima emerged at near zero pitch and a finite positive or

negative roll (Figure 2.13B, ii, iii, red, for rolling right or left), whose energies

were lower than the pitch local minimum. Hereafter, we refer to these local

minimum basins as pitch and roll basins 1.

1A fourth basin also emerged with its local minimum at a finite positive pitch and zero roll,
corresponding to the body pitching down against the beams. However, such a configuration
was never observed in the robot or animal.
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We discovered that the robot’s system state during the observed pitch and

roll modes were attracted to the pitch and roll basins, respectively. When the

body was far away from the beams, the system state in pitch and roll space

settled to the global minimum of the landscape (Figure 2.13B, i). During beam

interaction, without oscillation, the system state was trapped in the pitch basin,

leading to the body pushing across the beams in a pitched-up orientation with

little roll (Figures 2.13A, B, ii, iii). With oscillation, the system stochastically

escaped from the pitch basin and crossed a potential energy barrier to reach

the roll basin (Figure 2.13B, iii), thereby transitioning from the pitch to the

roll mode (Figure 2.13B, ii, iii’). We examined system state trajectory on the

landscape reconstructed for each trial. Whether the robot was trapped in the

pitch mode (blue trajectories) or transitioned to the roll mode (red trajectories),

its system state was attracted to the corresponding basin in nearly all trials

(99%, not significantly different from 1, P > 0.15, Student’s t-test, Figure 2.15A,

iii). Because of this strong attraction, the measured system potential energy

closely matched the observed mode basin’s local minimum energy throughout

traversal (Figure 2.16iii, solid vs. dashed curves). All these findings held true

at other K (near 100%, Figures 2.15A, 2.16). Together, these robot results

supported our first hypothesis that the self-propelled system’s state is attracted

to a local minimum basin on a potential energy landscape and that locomotor

transition from one mode to another can be viewed as the system state escaping

from one basin and settling into another.
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Figure 2.13: Robot locomotor transitions on a potential energy landscape. Re-
sults are shown at K = 255 mN·m/rad. (A) Snapshots of body before and
during interaction with two beams in pitch (i, ii, iii) and roll (iii’) modes. (B)
Snapshots of landscape over body pitch-roll space before (i) and during (ii,
iii) interaction. Representative system state trajectories are shown for being
trapped in pitch basin (blue) and transitioning to roll basin (red). Insets in (iii)
define potential energy barriers to escape from pitch local minimum in pitch-up
and positive roll directions. Dashed gray curves on landscape show boundaries
between pitch and roll basins. Note that landscape evolves as body moves for-
ward (increasing x), and only part of landscape over pitch-roll space is shown
to focus on pitch and roll basins. Reproduced from Othayoth, Thoms, and Li,
2020.
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Figure 2.14: Robot locomotor transitions are stochastic and become more likely
as kinetic energy fluctuation increases. Comparison of state trajectory ensemble
on average landscape (snapshot at x = -0.4 cm) across oscillation frequencies:
(A) f = 0 Hz; (B) f = 3 Hz; (C) f = 6 Hz. Results are shown at K =
255 mN·m/rad. Blue and red curves show trials trapped in pitch basin and
transitioning to roll basin, respectively. Trials in which body rolls left are flipped
to rolling right considering lateral symmetry. n = 10 trials at each f. Only part
of landscape over pitch-roll space is shown to focus on pitch and roll basins. Blue
trajectories exiting pitch basin is an artifact of landscape averaging. Reproduced
from Othayoth, Thoms, and Li, 2020.

Next, we tested the second hypothesis that when comparable to the potential

energy barrier, kinetic energy fluctuation from oscillatory self-propulsion helps

the system escape from a landscape to make locomotor transitions. We first

observed how kinetic energy fluctuation affected the robot’s escape from a basin.

Again, we examine results at K = 255 mN·m/rad first for simplicity. As f

increased (which increased kinetic energy fluctuation), the system was more

likely to escape from the pitch basin it was initially attracted to and reach the

roll basin (Figure 2.14), resulting in more likely pitch-to-roll transitions (Figure

2.12B, K = 255 mN·m/rad).
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Figure 2.15: Robot tends to transition to roll basin when kinetic energy fluctu-
ation is comparable to potential energy barrier to escape pitch local minimum
and towards direction of lower barrier. (A) Average potential energy landscape
over pitch-roll space (snapshot at x = 8 mm) with ensemble of state trajecto-
ries. Blue and red curves show trials trapped in pitch basin and transitioning
to roll basin, respectively. Note that landscape evolves as body moves forward
(increasing x) and only part of the landscape over pitch-roll space is shown to
focus on the pitch and roll basins. Top right number on each landscape shows
percentage of trials in which system state is attracted to pitch/roll basin corre-
sponding to observed mode. Blue trajectories exiting pitch basin is an artifact
of landscape averaging. (B) Polar plot of potential energy barrier to escape from
pitch local minimum (blue dot) along all directions in pitch-roll space (snapshot
at x = -53 mm). Pitch-to-roll transition barrier is defined as minimal escape
barrier (arrows in iv), which occurs at saddle point between pitch and roll basins
(yellow dot). (C) Pitch-to-roll transition barrier as a function of x. Gray band
shows x range in which pitch-to-roll transition is observed (mean ± s.d.). Green
circle/line in B, D shows measured average kinetic energy fluctuation of 2.3 mJ
at highest f = 6 Hz tested (Figure 2.10). (D) Probability distribution of state
velocity directions in pitch-roll space in the x range where transition is observed
(gray band in C). Blue and red are data from trials trapped in pitch basin
and transitioning to roll basin, respectively. Trials in which body rolls left are
flipped to rolling right considering lateral symmetry. Black dashed lines and
gray shaded sectors show angular direction of maximal escape barriers (mean ±
s.d) along pitch up and down directions. Yellow dashed line and shaded sector
show angular direction of minimal escape barrier (mean ± s.d), which occurs at
saddle point. Columns i-iv are at K = 28, 55, 255, and 344 mN·m/rad. Data
shown in A, C and D are for all f tested (n = 70 trials) at each K. Reproduced
from Othayoth, Thoms, and Li, 2020.
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Then, we compared the minimal potential energy barrier to escape from the

pitch local minimum with the average kinetic energy fluctuation at f = 6 Hz

(Figure 2.15C, iii). The escape barrier depended on both towards which direc-

tion the system moved in the pitch-roll space (Figure 2.13B, iii, insets, Figure

2.15B, iii) and body forward position x relative to the beams (Figure 2.15C, iii).

Minimal escape barrier occurred at the saddle point between the pitch and roll

basins (Figure 2.15C, yellow dot), which we defined as pitch-to-roll transition

barrier. Only within a small range of x was average kinetic energy fluctuation

at f = 6 Hz (Figure 2.15C, iii, green) sufficient for overcoming pitch-to-roll

transition barrier (Figure 2.15C, iii, black). This range matched remarkably

well with the x range over which pitch-to-roll transition was observed with in-

creasing likelihood with f (gray band showing mean ± s.d. from all trials across

f ). All these findings held true at K = 344 mN·m/rad. At K = 28 mN·m/rad,

minimal escape barrier far exceeded kinetic energy fluctuation, consistent with

the absence of transition. Together, these robot results supported our second

hypothesis that when comparable to the potential energy barrier, kinetic en-

ergy fluctuation from oscillatory self-propulsion helps the system escape from a

landscape to make locomotor transitions.
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Finally, we tested the third hypothesis that escape from a basin is more

likely towards a direction along which the escape barrier is lower, by examining

the direction towards which the robot’s system state moved during interaction.

At each K, when the body was not in contact with the beams, the escape barrier

was large along all directions in the pitch-roll space (e.g., x = -80 mm). As the

body moved forward (increasing x), the escape barrier towards the direction of

roll basins reduced drastically, becoming comparable to or even smaller than

average kinetic energy fluctuation at f = 6 Hz (green circle) at the saddle

point (yellow dot). By contrast, escape barrier in the direction of pitching up or

down was always greater than average kinetic energy fluctuation (Figure 2.15B).

Examination of how the system state moved on the landscape and probability

distribution of system state velocity directions in the pitch-roll space (Figure

2.15D) showed that escape was more aligned with the direction of the saddle

point between pitch and roll basins, i.e., escape was more likely towards the

direction of lower barrier. This is intuitive because in other directions escape

barrier was higher and often exceeded kinetic energy fluctuation. Together,

these robot observations supported our third hypothesis.

Comparison of robot observations across K further suggested a concept of

favorability for locomotor transitions. As K increased, pitch-to-roll transition

became more likely (Figure 2.15A), saturating at one for all f > 0 tested at the

highest K (Figure 2.12B). Intuitively, when the beams were flimsy, the body

pushed across (trapped in the pitch mode) as if nothing were there; when the

beams were rigid, the body could not push across and must roll. Thus, the

likelihood of pitch-to-roll transition is positively correlated with how favorable

transitioning to the roll mode is relative to staying in the pitch mode.
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Figure 2.16: Favorability measure for robot. Potential energy of measured pitch
and roll modes (solid, mean ± s.d.) and of pitch and roll local minima (dashed)
as a function of x. Measured data are for all f tested (n = 70 trials) at each K.
Blue and red show trials trapped in pitch basin and transitioning to roll basin,
respectively. Columns i-iv are at K = 28, 55, 255, and 344 mN·m/rad. Dotted
line at x = 8 mm shows location of snapshots in Figure 2.15A. Reproduced from
Othayoth, Thoms, and Li, 2020.

To provide a measure of favorability, we compared whether the pitch or roll

basin was lower during traversal, measured at their respective local minimum

(Figure 2.16). At low K (28 mN·m/rad), the pitch basin remained the global

minimum basin throughout traversal (Figure 2.16i), indicating that the pitch

mode was more favorable. As K increased, the pitch basin became increas-

ingly higher than the roll basin (Figure 2.16ii-iv), indicating that the roll mode

became increasingly more favorable. At small K = 55 mN·m/rad for x > 0,

although the roll mode was more favorable (Figure 2.16ii), kinetic energy fluctu-

ation was smaller than the transition barrier (Figure 2.15C, ii); thus, transition

did not occur (Figure 2.15A, ii). We emphasize that the negative correlation

between the probability of staying in or transitioning to a mode and its relative

basin height is only an emergent outcome of the transition physics. The passive

robot does not directly feel how high or how low an adjacent basin is; whether it

escapes and makes a transition only depends on the basin in which it currently
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Figure 2.17: Animal tends to transition to roll basin when kinetic energy fluctu-
ation is comparable to potential energy barrier to escape pitch basin and when
roll basin is more favorable. (A) Potential energy landscape over pitch-roll space
(snapshot at x = 4 mm, dotted lines in B) with ensemble of state trajectories.
Dashed black curves on landscape show boundary of pitch basin. Note that
landscape evolves as body moves forward (increasing x) and only part of land-
scape over pitch-roll space is shown to focus on pitch and roll basins. We set
color map scale to saturate at high energy to highlight landscape basins. (B)
Potential energy of pitch and roll local minima and pitch-to-roll transition bar-
rier as a function of x. Green line is measured average kinetic energy fluctuation
of 0.02 mJ. Columns i-v are at K = 0.1, 0.2, 0.7, 1.7, and 11.4 mN·m/rad (n
= 64, 60, 60, 62, and 64 trials). Reproduced from Othayoth, Thoms, and Li,
2020.

resides. Exactly how favorability difference between basins emerges from the

local dynamics of escaping from a basin remains to be understood.

Similar to the feedforward-controlled robot, the animal’s system state dur-

ing the observed pitch or roll mode was attracted to the corresponding basin of

the potential energy landscape (Figure 2.17A, 90% of trials at all K ). In addi-

tion, pitch-to-roll transition mostly occurred when both average kinetic energy

fluctuation became comparable to transition barrier and the roll mode became

73



more favorable than the pitch mode (Figure 2.17B). These similar observations

were remarkable because, for the animal that displayed larger lateral motion

and yawing, leg motion, and individual variation, the landscape (which was

averaged from all trials) provided a much coarser approximation of the system

than for the simpler, well-controlled robot. These animal results supported our

first and second hypotheses. We did not test the third hypothesis in the animal,

considering that the measured system state velocity was noisy and the animal

had higher lateral and yaw motion during traversal.

These results showed that physical interaction with the terrain also played a

major role in the animal’s probabilistic locomotor transitions, even when active

behavior was likely at play. In some trials, the animal transitioned even when

its average kinetic energy fluctuation was smaller than transition barrier (Figure

2.17B). In addition, the animal occasionally transitioned to the less favorable

roll mode at low K (Figure 2.17A, i, ii, red trajectories). Further, the animal

often flexed its head relative to the body and used the two hind legs differentially

(Wang, Othayoth, and Li, 2021) during beam interaction (23%, 63%, 89%, 79%,

and 85% of the trials at the five K ’s). All these were evidence that the animal’s

transition involved active behavior (see discussion). Unlike the robot that was

pulled forward at a constant speed (pulling force always exceeded beam resistive

force), the animal had a finite ability to push forward and may rely more on

such active behavior to facilitate transition (Wang, Othayoth, and Li, 2021).
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2.6 Discussion

In summary, using a transition between two representative modes in a model

system, we demonstrated that an energy landscape approach helps understand

how stochastic transitions of animals and robots across locomotor modes statis-

tically emerge from physical interaction with complex 3-D terrain. We discov-

ered that kinetic energy fluctuation from oscillatory self-propulsion helps the

system cross barriers on a potential energy landscape to make locomotor tran-

sitions. This provided compelling evidence about why variation in movement

can lead to stochastic outcome (Stephens et al., 2011) and can be advanta-

geous when locomotor behavior is separated into distinct modes. This also

explained early observations of surprising ability to traverse unstructured ter-

rain of bandwidth-limited, rapid-running insects (Sponberg and Full, 2008) and

feedforward-controlled legged robots (Altendorfer et al., 2001), as both have

substantial body oscillation during locomotion. However, we view this way of

“vibrate like a particle” as only one of a suite of transition strategies. Animals

and robots may use other strategies to make transitions, such as plan anticipa-

tory actions (Gart and Li, 2018) and use random search (Xuan and Li, 2020b)

to overcome barriers, use sensory feedback adjustments to move towards lower

barriers or reduce barriers (Wang, Othayoth, and Li, 2021), or even change mor-

phology to modify landscape topology to introduce or eliminate certain modes

(Han et al., 2021).

We posit that there is an “energy landscape dominated” regime of locomo-

tion, where along certain directions there exist large potential energy barriers
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that are comparable to or exceed kinetic energy and/or mechanical work gen-

erated by each propulsive cycle or motion. This may happen when propulsive

forces are either limited by physiological, morphological, and environmental

(e.g., low friction) constraints or do not well align with directions along which

large barriers occur. In complex terrain with many large obstacles (Gart and Li,

2018; Han et al., 2021; Li et al., 2015; Wang, Othayoth, and Li, 2021) and even

during strenuous maneuvers (Li et al., 2019; Othayoth and Li, 2021; Xuan and

Li, 2020b; Xuan and Li, 2020a), these situations are frequent. In this regime,

not only does energy landscape modeling provide a useful statistical physics ap-

proach for understanding locomotor transitions across modes, but it may also

allow comparison across systems (different animal species, robots, terrain, and

modes) to discover general physical principles. Outside of this regime, energy

landscape modeling is not useful—for example, not for ballistic jumping over

small obstacles with kinetic energy far exceeding potential energy barriers.

We discovered that distinct attractive basins of the potential energy land-

scape can lead to stereotyped locomotor modes and transitions in both the

animal and feedforward-controlled robot. Because our potential energy land-

scape is directly derived from first principles (as opposed to fitting a model to

behavioral data (Mearns et al., 2020; Stephens et al., 2008; Wiltschko et al.,

2015), this result provided compelling evidence that behavioral stereotypy of

animals emerges from their neural and mechanical systems directly interact-

ing with the physical environment (Berman, 2018; Brown and Bivort, 2018).

In addition, our approach should inform how direct physical interaction with

the environment constrains behavioral hierarchy (Berman, 2018; Brown and

Bivort, 2018). For example, for grass-like obstacle traversal, starting with our
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coarse-grained landscape here resulting from a rigid body interacting with rigid

“beams” on torsional springs, we can add degrees of freedom describing head

flexion (Wang, Othayoth, and Li, 2021), body bending and twisting, articu-

lated leg motions, and more realistic beam obstacles with cantilever bending

and spatial heterogeneity. This will reveal more nuanced pathways of transi-

tioning between fine-grained locomotor modes that have a variety of body and

appendage configuration and terrain responses (e.g., flexing the head and tuck-

ing the legs to roll into the gap (Wang, Othayoth, and Li, 2021), separating

beams laterally, etc.). Analyzing the disconnectivity (Wales, 2003) of basins of

such a more complete, high-dimensional energy landscape will reveal the hier-

archy (“treeness” (Berman, Bialek, and Shaevitz, 2016)) of locomotor modes in

complex terrain.

2.6.1 Towards understanding emergent behaviour in
natural environments

More broadly, these considerations suggest that our energy landscape approach

provides a means towards first-principle, physical understanding of the orga-

nization of locomotor behavior, filling a critical knowledge gap. The field of

movement ecology (Nathan et al., 2008) makes field observations of trajecto-

ries of animals as a point mass moving and making behavioral transitions in

natural environments (e.g., (Suraci et al., 2019)), whose physical interactions

are difficult to measure. Recent progress in quantitative ethology has advanced

understanding of the organization of behavior (Berman, Bialek, and Shaevitz,

2016; Berman, 2018; Brown and Bivort, 2018; Mearns et al., 2020; Wiltschko

et al., 2015), often by quantifying kinematics in homogeneous, near featureless

77



laboratory environments (Berman, Bialek, and Shaevitz, 2016; Cande et al.,

2018; Mearns et al., 2020; Stephens et al., 2008). Our work highlights the

importance and feasibility of, and opens new avenues for, studying how the

organization of behavior is constrained by an animal’s direct physical interac-

tion with realistic environments (Li, Zhang, and Goldman, 2013). Doing so will

help inform how animal behavior evolves in nature; it will also simplify robot

design, control, and planning to generate robust locomotor transitions in com-

plex terrain, which may be otherwise intractable in the large locomotor-terrain

parameter space. This is analogous to rugged free energy landscapes allowing

divide-and-conquer in protein folding (Dill and MacCallum, 2012).

Our empirically discovered physical principles of locomotor transitions are

surprisingly similar to those of microscopic systems (Figure 2.18), especially

multi-pathway protein folding transitions where predictive energy landscape

theories have been very successful (Dill et al., 2008; Onuchic and Wolynes,

2004; Wales, 2003). Thus, we envision our energy landscape as the beginning

of a statistical physics theory that will quantitatively predict global structures

and emergent dynamics of multi-pathway locomotor transitions in the energy

landscape dominated regime. An immediate next step towards this is to model

conservative forces using potential energy landscape gradients and add stochas-

tic, non-conservative propulsive and dissipative forces that perturb the system

to “diffuse” across landscape barriers (analogous to (Bryngelson and Wolynes,

1989; Socci, Onuchic, and Wolynes, 1996)). Doing this may also elucidate how

escape dynamics from a basin locally leads to emergent favorability difference

between basins. These physical principles may help reveal how animals, and
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Figure 2.18: Comparison of energy landscape between protein-folding transi-
tions and locomotor transition. (A) Energy landscape theories help understand
physical principles and predict global structures and emergent properties of
probabilistic protein folding transitions via multiple pathways. Image credits:
A, left panel Reproduced from (Dill and MacCallum, 2012); A, right panel re-
produced from (Voelz et al., 2012). (B) We envision energy landscape modeling
as a beginning of a statistical physics approach for understanding and predicting
probabilistic, multi-pathway locomotor transitions in complex terrain (Li et al.,
2015). Reproduced from Othayoth, Thoms, and Li, 2020.

how robots should, use local force sensing to control motion to facilitate loco-

motor transitions on the landscape. Further, although it seems obvious that

near-equilibrium statistical thermodynamics does not directly apply here, an

energy landscape approach to locomotor transitions in complex terrain provides

opportunities to test and develop new theories of few-body active matter (Savoie

et al., 2019).
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Finally, our energy landscape approach provides a conceptual way of think-

ing about locomotor modes beyond near-steady-state, limit-cycle-like behavior

(e.g., walk, run, climb (Blickhan and Full, 1993; Goldman et al., 2006; Kuo,

2007)) by adding metastable behavior (Byl and Tedrake, 2009) locally attracted

to landscape basins (e.g., pitch and roll modes here, which are far-from-steady

maneuvers). We foresee the creation of new dynamical systems theories of ter-

restrial locomotion (Holmes et al., 2006) that produce transitions across locally

attractive landscape basins as well as between limit-cycle attractors (Diederich,

Schumm, and Cruse, 2002; Geyer, Seyfarth, and Blickhan, 2006). They will

enable using physical interaction to design, control, and plan basins funneled

into one another to compose (Burridge, Rizzi, and Koditschek, 1999) locomo-

tor transitions to perform high-level tasks in the real world. Terradynamics

of locomotor-terrain interaction starting from first principles (Li, Zhang, and

Goldman, 2013) such as illustrated here will facilitate this progress.
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Chapter 3

Propelling and perturbing
appendages together facilitate
strenuous ground self-righting

This chapter is a published paper by Ratan Othayoth and Chen Li in eLife

(2021) (Othayoth and Li, 2021).

3.1 Summary

Terrestrial animals must self-right when overturned on the ground, but this

locomotor task is strenuous. To do so, the discoid cockroach often pushes its

wings against the ground to begin a somersault which rarely succeeds. As it

repeatedly attempts this, the animal probabilistically rolls to the side to self-

right. During winged self-righting, the animal flails its legs vigorously. Here,

we studied whether wing opening and leg flailing together facilitate strenuous

ground self-righting. Adding mass to increase hind leg flailing kinetic energy

increased the animal’s self-righting probability. We then developed a robot

with similar strenuous self-righting behavior and used it as a physical model
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for systematic experiments. The robot’s self-righting probability increased with

wing opening and leg flailing amplitudes. A potential energy landscape model

revealed that, although wing opening did not generate sufficient kinetic energy

to overcome the high pitch potential energy barrier to somersault, it reduced

the barrier for rolling, facilitating the small kinetic energy from leg flailing to

probabilistically overcome it to self-right. The model also revealed that the

stereotyped body motion during self-righting emerged from physical interaction

of the body and appendages with the ground. Our study demonstrated the

usefulness of potential energy landscape for modeling self-righting transitions.

3.2 Author contributions

Ratan Othayoth designed robotic physical model, performed animal and robot

experiments, analyzed and validated results, created visualizations, and wrote

the manuscript. Chen Li conceived and designed study, supervised the project,

obtained funding and reviewed and edited the manuscript. I acknowledge Qi-

han Xuan for preliminary potential energy landscape modelling of ground self-

righting.
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3.3 Introduction

Ground self-righting is a critical locomotor capability that animals must have

to survive (for a review, see Li et al., 2019). The longer an animal is flipped

over and stranded, the more susceptible it is to risks like predation, starvation,

desiccation (Steyermark and Spotila, 2001), and limited mating success (Penn

and Brockmann, 1995). Thus, it is crucial for animals to be able to self-right

at a high probability because it can mean the difference between life or death.

Similarly, ground self-righting is critical for the continuous operation of mobile

robots (for a review, see Li et al., 2017).

Ground self-righting is a strenuous task. For example, to self-right, cock-

roaches must overcome potential energy barriers seven times greater than the

mechanical energy required per stride for steady-state, medium speed running

(8 body lengths s−1) (Kram, Wong, and Full, 1997) or, exert ground reaction

forces eight times greater than that during steady-state medium speed run-

ning (5 body lengths−1) (Full, Yamauchi, and Jindrich, 1995). Often, animals

struggle to self-right quickly and needs multiple attempts (Brackenbury, 1990;

Domokos and Várkonyi, 2008; Hoffman, 1980; Koppányi and Kleitman, 1927;

Li et al., 2019; Silvey, 1973) to self-right due to constraints from morphology,

actuation, and the terrain (Domokos and Várkonyi, 2008; Faisal and Matheson,

2001; Golubović et al., 2017; Li et al., 2019; Steyermark and Spotila, 2001).

Ground self-righting has been studied in a diversity of animals, including

insects (Brackenbury, 1990; Delcomyn, 1987; Faisal and Matheson, 2001; Frant-

sevich and Mokrushov, 1980; Li et al., 2019; Sherman, Novotny, and Camhi,

1977; Zill, 1986), crustaceans (Davis, 1968; Silvey, 1973) , mollusks (Hoffman,
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1980; Weldon and Hoffman, 1979; Zhang et al., 2020), and vertebrates (Ashe,

1970; Bartholomew and Caswell, 1951; Creery and Bland, 1980; Domokos and

Várkonyi, 2008; Golubović A, 2015; Koppányi and Kleitman, 1927; Malashichev,

2016; Pellis, Pellis, and Teitelbaum, 1991; Robins et al., 1998; Vince, 1986; Win-

ters et al., 1986). A diversity of strategies have been described, including using

appendages such as legs, wings, tail, and neck and deforming the body sub-

stantially. Often, rather than using a single type of appendages or just deform-

ing the body without using appendages, animals use them together to propel

and perturb the body to destabilize from the upside-down state (Brackenbury,

1990; Davis, 1968; Domokos and Várkonyi, 2008; Faisal and Matheson, 2001;

Hoffman, 1980; Li et al., 2019). In particular, vigorous appendage flailing is a

ubiquitous behavior observed across a diversity of species (Ashe, 1970; Bracken-

bury, 1990; Davis, 1968; Delcomyn, 1987; Domokos and Várkonyi, 2008; Faisal

and Matheson, 2001; Hoffman, 1980; Kleitman and Koppanyi, 1926; Koppányi

and Kleitman, 1927; Li et al., 2019; Zill, 1986). Some of these animals also

use other appendages or the body to propel against the ground (Brackenbury,

1990; Davis, 1968; Domokos and Várkonyi, 2008; Faisal and Matheson, 2001;

Hoffman, 1980; Li et al., 2019). Such vigorous appendage flailing, at a first

glance appears to be wasteful.

Here, we study how propulsive and perturbing appendages together con-

tribute to successful strenuous ground self-righting. Our model system is the

discoid cockroach’s strenuous ground self-righting using wings (Li et al., 2019))

(Figure 3.1). The overturned animal opens and pushes its wings against the

ground in an attempt to self-right, resulting in its body pitching forward (Fig-

ure 3.1Ai). Because the two opened wings and head form a triangular base of
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Figure 3.1: Strenuous, leg-assisted, winged ground self-righting of discoid cock-
roach. (A) Representative snapshots of animal successfully self-righting by pitch
(blue) and roll (red) modes after multiple failed attempts (black arrow). See
Figure 1—video 1 for a typical trial, in which the animal makes multiple failed
attempts to pitch over the head and eventually rolls to self-right. (B) Schematic
of metastable state with a triangular base of support (dashed triangle) formed
by ground contacts of head and two wing wedges, with vigorous leg flailing.
Red and blue curves show representative trajectories of left and right hind leg
tips from a trial. x-y-z is lab frame. (C, D) Stereotyped body motion during
successful (C) and failed (D) self-righting attempts in body pitch, body roll,
and center of mass height space. i, ii, and iii in A, C, and D show upside-down
(i), metastable (ii), and upright (iii, iii’) states. Ellipsoids show means (center
of ellipsoid) ± s.d. (principal semi-axis lengths of ellipsoid) of body pitch, body
roll, and center of mass height at the beginning, highest center of mass height,
and end of the attempt. For failed attempts, the upside-down state at the end of
the attempt is not shown because it overlaps with the upside-down state at the
start of the attempts (i). Data from Li et al., 2019. Reproduced from Othayoth
and Li, 2021
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support, in which the center of mass projection falls (Figure 3.1Aii, B), this

intermediate state is metastable. However, wing pushing rarely pitches the an-

imal all the way over its head to self-right (the pitch mode, Figure 3.1Aii-iii,

blue). Thus, the animal often opens and closes its wings (hereafter referred

to as an attempt) multiple times, resulting in its body repeatedly pitching up

and down, but it fails to self-right (Figure 3.1A, black arrows). Eventually, the

animal almost always self-rights by rolling sideways over one of the wings (the

roll mode; Figure 3.1Aii-iii’, red). Although wings are the primary propulsive

appendages in this self-righting strategy, the animal also vigorously flails its

legs mediolaterally, even when body pitching nearly prevents them from reach-

ing the ground (Figure 3.1B, dashed curves). The legs occasionally scrape the

ground, the abdomen occasionally flexes and twists, and the wings often de-

form passively under load (Li et al., 2019). For simplicity, we focused on the

perturbing effects of the more frequent leg flailing (but see discussion of these

other perturbing motions). Another curious observation is that, although the

animal can in principle rotate its body in arbitrary trajectories to self-right, the

observed body motion is stereotyped (Figure 3.1) (Li et al., 2019).

A recent potential energy landscape approach to locomotor transitions (Oth-

ayoth, Thoms, and Li, 2020; Othayoth et al., 2021b) provides a modeling frame-

work to understand how propelling and perturbing appendages together con-

tribute to strenuous ground self-righting. A previous study modeling ground

self-righting of turtles in two dimensions (the transverse plane in which the

body rolls) suggested that, when trapped in a gravitational potential energy

well, modest kinetic energy from perturbing appendages (legs and neck) helps

overcome the small potential energy barriers (Domokos and Várkonyi, 2008). A
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Figure 3.2: Animal leg modification and robotic physical model. (A) Discoid
cockroach with modified hind legs with stainless steel spheres attached. (B)
Robotic physical model in metastable state with a triangular base of support
(dashed triangle), formed by ground contacts of head and two wing edges. Black
arrow shows body Z -axis, Zbody. Reproduced from Othayoth and Li, 2021.

recent study of cockroaches took an initial step in expanding potential energy

landscape modeling of ground self-righting to three dimensions (Li et al., 2019).

However, due to frequent camera occlusions, this study was unable to measure

the complex 3-D motions of appendages and only modeled the animal as a rigid

body. For turtles with a rigid shell interacting with the ground, modeling self-

righting with a rigid body is a good first-order approximation. However, this

approximation is no longer good for modeling winged self-righting of the discoid

cockroach because wing opening will change potential energy landscape.

Inspired by these insights and limitations, we hypothesized that the discoid

cockroach’s wing opening reduces the barriers to be sufficiently low for small
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Figure 3.3: Robot wing and leg actuation and body orientation measurement.
(A) Schematic of leg-assisted, winged self-righting robot from front and side
views with geometric dimensions. Front view illustrates wing rolling and leg
oscillation and side view illustrates wing pitching. Wing pitching and rolling
are by the same angle, synchronized, and together compose wing opening. (B)
Motor angles of wings (blue) and leg (red) as a function of time. Solid and
dashed curves are commanded and measured motor actuation profiles, respec-
tively. (C) Projection of gravitational acceleration vector "g"onto body Z-axis
"Z" body as a function of time, measured using onboard IMU. Vertical dashed
line shows the instant when the robot self-righted. In B, C, columns i and ii are
for a representative failed and successful trial, respectively. Reproduced from
Othayoth and Li, 2021.

kinetic energy from leg flailing to overcome. This hypothesis predicted that

the greater the wing opening and leg flailing are, the more likely self-righting

is to occur. We first tested this prediction in the animal, by directly modifying

the hind leg inertia to increase kinetic energy from leg flailing (Figure 3.2A)

and studying how it impacted self-righting probability. Then, we developed a

robotic physical model (Figure 3.2B) to systematically test the prediction using

repeatable experiments over a wide range of wing opening and leg oscillation

amplitudes. In addition, we modeled the escape from the metastable state to

self-right as a probabilistic barrier-crossing transition on an evolving potential

energy landscape of the self-deforming robot/animal, facilitated by kinetic en-

ergy. The landscape is the gravitational potential energy of the robot in its body
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pitch-roll space. Because self-righting could in principle occur via both roll and

pitch modes, we analyzed the potential energy barriers on landscape and the ki-

netic energy from wing opening (primary propulsion) and leg flailing (secondary

perturbation) along roll and pitch directions. Considering the effects of wing

opening and leg flailing separately gave new insight into the physical mechanism

of self-righting. Finally, we examined whether the observed stereotypy of the

animal’s body motion can be explained by the potential energy landscape.

We designed and controlled our robotic physical model to achieve similar,

strenuous self-righting behavior as the animal’s, where both wing and leg use

are crucial (see discussion). The robot consisted of a head, two wings, a leg, and

motors to actuate the wings and leg (Figure 2B). To emulate the animal’s wing

opening, both robot wings opened by rolling and pitching about the body by the

same angle (defined as wing opening amplitude, θwing; Figures 3.2B, 3.3). To

simplify leg flailing of the animal, the robot used an actuated inverted pendulum

(leg) which oscillated in the coronal plane by the same angle to both sides

(defined as leg oscillation amplitude, θleg; Figures 3.2B, 3.3 ). We opened and

closed the robot’s wings (hereafter referred to as an attempt) repeatedly while

oscillating its legs to generate repeated attempts observed in the animal. The

robot’s leg oscillation was feedforward-controlled, considering that the animal’s

leg flailing motion did not correlate with wing opening motion (see Materials &

Methods for detail). Sufficiently large or sufficiently asymmetric wing opening

alone guarantees self-righting (Li et al., 2016; Li et al., 2017)). Here, to study

the effect of using both wings and legs under the most strenuous condition, we

chose to open both wings symmetrically and only used sufficiently small θwing

with which the robot did not always self-right with wing opening alone. We
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emphasize that our goal was not to simply achieve successful self-righting in a

robot, but use the robot as a test platform to systematically vary wing opening

and leg flailing in a controlled manner.

We chose to focus potential energy landscape modeling on the robotic phys-

ical model because it offers two advantages. First, the animal’s complex 3-D

motion with many degrees of freedom is difficult to quantify. It would take ∼540

hours (∼12 working weeks) to track our animal dataset (∼5 seconds per trial at

200 frames/s, with 3 markers on the body, each wing, and each leg) to quantify

3-D motion required for calculating the potential energy landscape. In addition,

wing motion is often impossible to quantify due to occlusion under the body.

By contrast, the robot’s simpler mechanical design, controlled actuation, and an

onboard inertial measurement unit (IMU) sensor allowed easier reconstruction

of its 3-D motion. Second, the animal’s wing opening and leg flailing are highly

variable (Xuan and Li, 2020a) and cannot be controlled. This results in the

potential energy landscape varying substantially from trial to trial and makes it

difficult to evaluate how the system behaved probabilistically on the landscape.

By contrast, the robot’s controlled variation of wing opening and leg flailing

allowed us to do so. Considering that body rolling is induced by centrifugal

force from leg flailing, we compared the ratio of leg centrifugal force to leg grav-

itational force between the animal and robot and verified they are dynamically

similar (see Materials and Methods for detail). In addition, because the animal

and robot are geometrically similar, their potential energy barriers also scale as

expected (Table 2). Thus, we argue that the physical principles discovered for

the robot are applicable to the animal.
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3.4 Methods–Animal Experiments

3.4.1 Animals

We used 30 adult male Blaberus discoidalis cockroaches (Figure 3.2A) (Pinellas

County Reptiles, St Petersburg, FL, USA), as females were often gravid and

under different load-bearing conditions. Prior to experiments, we kept the ani-

mals in individual plastic containers at room temperature (24 ºC) on a 12h:12h

light: dark cycle and provided water and food (rabbit pellets) ad libitum. An-

imals weighed 2.6 ± 0.2 g and measured 5.3 ± 0.2 cm in length, 2.3 ± 0.1 cm

in width, and 0.8 ± 0.1 cm in thickness. All data are reported as mean ± s.d.

unless otherwise specified.

3.4.2 Leg modification

To study the effect of leg flailing, we directly modified both hind legs of the

animal. We attached stainless steel spheres of diameter 0.32 cm and mass

0.14 g (5% of body weight, 180% of leg weight (McMaster-Carr, Elmhurst, IL,

USA) to the tibia-tarsus joint of both hind legs (Figure 3.2A) using ultraviolet

curing glue (BONDIC, Ontario, Canada). We verified that the added mass

increased the average kinetic energy during leg flailing (Figure 3.6, see Section

3.4.6 ‘Kinetic energy measurement’).

3.4.3 Experiment protocol

We used a flat, wooden surface (60 cm × 60 cm) covered with cardstock and

walled with transparent acrylic sheets as the righting arena. Four 500 W work
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lights (Coleman Cable, Waukegan, IL, USA) illuminated the arena for high-

speed imaging. We maintained the arena at an ambient temperature of 40 ± 2C

during experiment. We used two synchronized cameras (Fastec IL5, Fastec

Imaging, San Diego, CA, USA) at 200 frames s−1 and 200 µs shutter time to

record the self-righting maneuver from top (1200 × 1080 pixels) and side (1200

× 400 pixels) views, with a small lens aperture to maximize the focal depth of

field.

For each trial, we first started video recording, held the animal upside-down

by its pronotum, and gently released it from a height of ≈ 1 cm above the center

of the righting arena. The small drop was to ensure that the animal did not

begin leg searching, a common strategy used to self-right (Camhi, 1977), before

it was released. The animal was given 10 seconds to attempt to self-right during

each trial. After it self-righted or 10 seconds elapsed, the animal was picked up,

and video recording was stopped. After each trial, we returned the animal to

its container and continued testing a different animal. This way, each animal

was allowed to rest for ≈ 30 minutes before its next trial to minimize the effects

of fatigue (Camhi, 1977).

We tested 30 animals, each with five trials with its hind legs intact and then

modified, resulting in a total of 300 accepted trials (N = 30 animals, n = 150

trials for each leg treatment). We excluded trials in which the animal collided

with the walls of the righting arena or moved out of both camera views.

3.4.4 Self-righting performance

For each animal trial, we watched the videos to determine whether the animal

self-righted. Because the animal did not always immediately begin to self-right
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when placed on the arena (Camhi, 1977; Li et al., 2019), we defined the begin-

ning of the self-righting attempt as the instant when the animal began moving

its body or appendages to self-right. We defined the animal to have successfully

self-righted if it attained an upright orientation with all six legs on the ground

within 10 s of starting its attempt. We identified the trials in which animal suc-

ceeded in self-righting using the leg-assisted, winged strategy. For each animal

and each leg treatment, we defined and measured self-righting probability as the

number of trials that self-righted using winged attempts divided by the total

number of trials. We counted the trials that used the legged strategy as failed.

We then calculated average self-righting probability for each leg treatment by

averaging across all animals.

3.4.5 Preference of self-righting strategies

We verified that the animal’s preference of winged and legged self-righting

strategies (see Footnote 1) did not change with leg modification. To compare

the animal’s preference of winged and legged self-righting strategies before and

after leg modification, for each trial, we examined the videos to identify winged

and legged self-righting attempts and measured the percentage of time spent

on each strategy. Then, for each leg treatment and each animal, we averaged

it across all the trials from that animal. For each treatment, we then averaged

across each animal to calculate the average percentage of time spent on each

strategy (Figure 3.5).
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3.4.6 Kinetic energy measurement

To measure the animal’s pitch and roll kinetic energy during self-righting, in a

separate experiment, we used three high speed cameras (Photron FASTCAM

Mini UX-100) to record the animal self-righting at 2000 frames s−1 and a reso-

lution of 1280 × 1024 pixels, first with its hind legs intact (N = 2 animals, n

= 2 trials) and then modified (N = 2 animals, n = 2 trials).

We used DeepLabCut (Mathis et al., 2018) to track the tip and femur-

tibia joint of both hind legs, head anterior tip, abdomen posterior tip, and body

midpoint (Figure 3.6A, B). We then used Direct Linear Transformation software

DLTdv5 (Hedrick, 2008b) to reconstruct 3-D motion of the tracked points and

used a sixth order Butterworth filter with a cut-off frequency of 25 Hz to filter

their 3D positions.

To calculate kinetic energy, we approximated the animal body as an ellipsoid

cut into two parts at 38% of total length from the anterior end, connected by a

hinge joint (thorax-abdomen joint, Figure 3.6A). The smaller part represented

the animal’s head and thorax, and the larger part represented its abdomen.

We assumed uniform mass distribution for both parts. We used the geometric

center of the body parts when their fore-aft axes are aligned to approximate

body center of mass . For both hind legs, we approximated the coxa-femur and

tibia-tarsus segment as rigid rods. One end of the rod representing coxa-femur

segment was connected to the body at the midpoint of thorax-abdomen joint,

and the other end connected to the rod representing tibia-tarsus segment, both

via spherical joints (Figure 3.6A, B, thick black lines connected by blue dots).

For modified hind legs, we approximated the stainless steel spheres at the leg
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tip as a point mass attached to the free end of the tibia-tarsus rod (Figure 3.6A,

B).

We defined pitch and roll kinetic energy as the sum of kinetic energy from

translational and rotational velocity components from all body parts that con-

tribute to pitching and rolling motion, respectively. We obtained pitch and

roll kinetic energy by summing contributions from the body ellipsoid parts and

the hind leg segments. For each part, we measured its rotational velocity com-

ponents about the animal’s body fore-aft (Xbody) and lateral (Ybody) principal

axes, and we measured the translational velocity components of its center of

mass along the fore-aft and lateral directions (Figure 3.6B, red vs. blue ar-

rows). For the sphere attached to modified leg, we measured its translational

velocities. Because vertical translational velocity and yaw angular velocity did

not contribute to motion along the pitch or roll direction, we did not consider

them. For each of the ellipsoid parts and rigid rods, we calculated its pitch and

roll kinetic energy as follows:

KEpitch,j = 1
2Iyy,jω

2
y,j + 1

2mjv
2
x,j (3.1)

KEroll,j = 1
2Ixx,jω

2
x,j + 1

2mjv
2
y,j (3.2)

where Ixx,j and Iyy,j are the moments of inertia the jth object measured about

the animal’s body fore-aft (Xbody) and lateral (Ybody) principal axes, respectively,

mj is the mass of jth object, ωx,j and ωy,j are the rotational velocities of the jth

object about body fore-aft and lateral principal axes, and vx,j and vy, j are the

translational velocity of the center of mass of the jth object along fore-aft and
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lateral directions, respectively (Figure 3.6B). For both hind leg segments, we

used the mass reported in (Kram, Wong, and Full, 1997) (0.07 g for coxa-femur

segments and 0.01 g for tibia-tarsus segment). To calculate the mass of the two

body parts, we assumed body density to be uniform.

We calculated the pitch and roll kinetic energy of the added spherical mass

as follows:

KEpitch,sphere = 1
2mspherev

2
x,sphere (3.3)

KEroll,sphere = 1
2mspherev

2
y,sphere (3.4)

where msphere is the added spherical mass, and vx, sphere and vy, sphere are

the translational velocity components of the sphere along fore-aft and lateral

directions, respectively. We considered kinetic energy from the added spherical

mass only for animal with modified legs.

We obtained the pitch and roll kinetic energy of the intact animal from equa-

tions (3.1) and (3.2) respectively. For the modified animal, we added equations

(3.1) and (3.3) to obtain total pitch kinetic energy and added (3.2) and (3.4) to

obtain total roll kinetic energy. For each trial, we first averaged the measured

kinetic energy along pitch and roll directions over the recorded interval (2.5 s)

for each trial. Then for each leg treatment, we further averaged it across all the

trials of that treatment (intact: N = 2 animals, n = 2 trials; modified: N = 2

animals, n = 2 trials).
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3.4.7 Relationship between wing opening and leg
flailing

We examined whether the animal’s leg flailing during self-righting was more

feedforward-driven or more towards a feedback-controlled reflex coordinated

with wing opening. To do so, we measured the correlation between wing open-

ing and leg flailing motions as well as their self-correlations (Figure 3.7). Be-

cause wing opening was difficult to measure due to occlusion of wings by the

body during self-righting, we used abdomen tip height as a proxy for wing open-

ing, considering that abdomen tip height typically increased as wings opened.

For each hind leg, we used its leg tip height as a proxy of the flailing motion

(Figure 3.6). To check whether the height of abdomen tip and hind leg tips

were correlated to each other and to themselves, we measured the normalized

cross-correlations between each pair of these variables and the normalized auto-

correlation of each of them (Figure 3.7). Normalized cross correlation h between

two signals f (t) and g(t) is defined as

h(t) =
∫︁ ∞

−∞ f ∗(τ − t)g(τ)dτ√︂∫︁ ∞
−∞ |f(τ)|2dτ.

∫︁ ∞
−∞ |g(τ)|2dτ

(3.5)

where t is the time lag between f(t) and g(t) and is a variable, τ is the variable

of integration, and f ∗ (t) is the complex conjugate of f(t). When f(t) = g(t),

h(t) is the normalized autocorrelation.

All normalized cross correlations plots lacked a prominent peak whose value

was close to 1, and all normalized autocorrelations plots had a prominent peak

only at zero lag. This showed that abdomen tip height did not correlate with

itself or with either of the two hind leg tips heights (Figure 3.7A, B, F). This
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meant that wing opening and leg flailing motions were not correlated to each

other during self-righting. However, the normalized cross correlation between

both hind legs had recurring oscillations as the lag increased in magnitude

(Figure 3.7). This suggested that leg flailing had some rhythm, despite a large

temporal variation and difference between the two hind legs (Delcomyn, 1987;

Sherman, Novotny, and Camhi, 1977; Zill, 1986).
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3.5 Methods–Robotic physical modelling

3.5.1 Design and actuation

The robot consisted of a head, two wings, a leg, and four motors to actuate

the wings and one to actuate the leg (Table 1, Figures 3.2B, Figure 3.3). The

head and wings were cut from two halves of a thin ellipsoidal shell thermo-

formed (Formech 508FS, Middleton, WI, USA) from 0.16 cm thick polystyrene

plastic sheet (McMaster-Carr, Elmhurst, IL, USA). We connected different parts

using joints 3-D printed using PLA (Ultimaker 2+, Geldermalsen, Netherlands)

(Figure 3.2B). We used DC servo motors (Dynamixel XL-320, ROBOTIS, Lake

Forest, CA, USA) to actuate both the wings and the leg.

To measure the robot’s 3-D orientation (roll, pitch, and yaw angles), we

attached an inertial measurement unit (IMU) (BNO055, Adafruit, New York,

NY, USA) near its center of mass determined from the robot CAD model. We

used the Robot Operating System (Version: melodic) ((Quigley et al., 2009))

to send actuation signals for the wing and leg motors and record IMU data. To

ensure a constant voltage for repeatable experiments, we used an external 8 V

voltage source (TP3005DM, TEK Power, Montclair, CA, USA) to power the

robot. We used fine flexible wires (30 AWG, 330-DFV, Vishay Sensor, USA)

for powering robot and sending/acquiring signals and ensured that they were

loose and did not interfere with robot motion.

3.5.2 Similarity to animal

To examine whether the robotic physical model was similar to the animal and

reasonably approximated its self-righting motion, we examined how well they
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Table 3.1: Mass distribution of the robot.

Component Mass (g)
Head 13.4
Leg rod 4.3
Leg added mass 51.5
Leg motor 28.6
Two wings 57.4
Two wing pitch motors 56.0
Two wing roll motors 48.8
Total 260.0

were geometrically similar and their leg flailing motions were dynamically sim-

ilar. To evaluate geometric similarity, we compared their dimensions. For geo-

metrically similar objects, length l should scale with mass m and density ρ as

l ∝ (m/ρ)1/3 (Alexander, 2006). Following this, potential energy should scale

as E ∝ m · (m/ρ)1/3 ∝ m4/3ρ−1/3.The robot, which was 90 times as much heavy

and 2.3 times as much dense as the animal with modified legs (Table 3.2) was

expected have dimensions (90/2.63)1/3 = 3.4 times those of the animal. For

the animal, m includes the added mass from leg modification because we used

the same for calculating the potential energy landscape. Because gravitational

potential energy is proportional to mass and center of mass height, the poten-

tial energy barriers should scale by a factor of 904/3 × 2.63−1/3 = 305 (Table 2).

We found that the robot’s length, thickness, and pitch potential energy barriers

scaled up roughly as expected (Table 2). The larger scaling factor for robot’s

width and roll potential energy barrier is due to the robot being designed wider

to make self-righting via rolling more strenuous.

To evaluate dynamic similarity between the robot and animal, we calculated

Froude Number for their leg flailing. Here, we used the following definition of
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Table 3.2: Comparison between animal and robot.

Parameter Animal Robot Ratio
Body length 2a (mm) 53 260 4.9
Body width 2b (mm) 23 220 9.6
Body thickness 2c (mm) 8 43 5.4
Mass attached to leg (g) 0.14 51.5 368
Total mass m* (g) 2.84 260 90
Density ρ (×10−3g ·mm−3) 0.88 2.05 2.3
Expected length scale factor (m/ρ)1/3 1.47 5.06 3.4
Expected potential energy scale factor m4/3/ρ1/3 4.28 1306 305
Maximum pitch potential energy barrier (mJ) 0.58 282 486
Maximum roll potential energy barrier (mJ) 0.19 244 1284

Froude number for leg flailing Fr Intact legs 0.37 0.78 2.1
Modified legs 1.27 0.61

* Includes mass attached to the legs.

Froude number (Biewener, 2003):

Fr = Inertial force from leg flailing
Gravitational force of leg = mv2/r

mg
= v2

rg
(3.6)

where m is the mass of the animal or robot leg(s), plus the added mass attached

it for the modified animal, v is the leg translational velocity along the body

lateral principal axis, g is gravitational acceleration, and r is leg length.

We found that the Froude numbers for the robot and both the intact and

modified animals were similar (within a factor of two). This dynamic similarity

demonstrated that the robot provided a good physical model for studying the

animal’s self-righting.

3.5.3 Experiment protocol

For robot experiments, we used a level, flat, rigid wooden surface (60 cm × 60

cm) covered with sandpaper as the righting arena. We used two synchronized
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webcams (Logitech C920, Logitech, Newark, CA, USA) to record the experiment

from top and side views at 30 frames s-1 and a resolution of 960 × 720 pixels.

Using the onboard IMU, we recorded the robot body orientation relative to the

lab coordinate system (X-Y -Z in Figure 3.2B) at ≈ 56 Hz and synchronized

them with the motor actuation timings angles (Figure 3.3, bottom right).

Before each trial, we placed the robot upside-down (Figure 3.9Ai) on the

arena, with its wings closed and leg aligned with the body midline and started

video recording. We then actuated the robot to repeatedly open and close its

wings at 2 Hz and oscillate its legs at 2.5 Hz to self-right. Because the animal was

likely to move its leg before wings at the start of self-righting (59% of intact

leg trials and 81% of modified leg trials), for non-zero robot leg oscillation

amplitudes, the first wing opening was started after completing one cycle of

leg oscillation (0.4 s). If the robot did not self-right after five wing opening

attempts (10 s), we powered down the robot, stopped video recording, and

reset the robot for the next trial. We tested self-righting performance of the

robot by systematically varying leg oscillation amplitude θleg (0°, 15°, 30°, 45°)

and wing opening amplitude θwing (60º, 72, 83º). We collected five trials for

each combination of θwing and θleg. This resulted in a resulted in a total of 60

trials with 134 attempts.

To reconstruct the robot’s 3-D motion, in a separate experiment, we char-

acterized how the wing and leg actuation angles changed over time during an

attempt (Figure 3.3). We attached BEETag markers (Crall et al., 2015) to the

body frame and to each link actuated by the motors and tracked their posi-

tions using two calibrated high speed cameras (Fastec IL5, Fastec Imaging, San

Diego, CA, USA) at 500 frame s−1 and a resolution of 1080 × 1080 pixels,
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as the robot actuated its wings and legs to self-right. We obtained 3-D kine-

matics of the markers using the Direct Linear Transformation method DLTdv5

(Hedrick, 2008b). We then measured the rotation of the link actuated by each

motor about its rotation axis as a function of time during an attempt. Because

the wings were controlled to roll and pitch by the same angle, we used the

average measured wing actuation profile of all the four motors (two for wing

pitching and two for wing rolling). The actual wing opening and leg oscillation

angles were smaller than the commanded (solid blue and red) due to the inertia

of robot body components attached to each motor.

3.5.4 Self-righting performance

We defined the beginning of the righting attempt as the instant when the robot

first started opening its wings and measured this instance from the commanded

motor actuation profile (Figure 3.3Bii). We defined the robot to have success-

fully self-righted if it attained an upright orientation within 10 seconds (five

attempts). We used the IMU to measure the projection of the gravity acceler-

ation vector g onto the body Z-axis Zbody as a function of time. This allowed

us to determine when the robot became upright. We then counted the num-

ber of successful and failed attempts for each trial. For each trial, we defined

self-righting probability as the ratio of the number of successful attempts to the

total number of attempts of that trial. At each wing opening and leg oscillation

amplitude, we then averaged it across all trials of that treatment to obtain its

average self-righting probability. Among all the 134 attempts observed across

all 60 trials, 44 attempts succeeded (12, 15, and 17 attempts at θwing = 60°,

72°, and 83°, respectively), and 90 attempts failed (46, 27, and 17 attempts at
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θwing = 60°, 72°, and 83°, respectively).

3.5.5 Robot 3-D motion reconstruction

For each robot trial, we measured the robot’s 3-D orientation in the lab frame

using Euler angles (yaw α, pitch β, and roll γ, Z-Y’-X” Tait-Bryan convention).

We divided each trial temporally into 0.01 s intervals and used the measured

motor actuation angles and body 3-D orientation (Figure 3.3 B, C) at each

interval to reconstruct the robot’s body shape and 3-D orientation, respectively.

Because the IMU measured only the 3-D orientation of the robot, we constrained

the robot’s center of mass to translate only along the vertical direction (Figure

3.2B, Z-axis of lab frame) while maintaining contact with the ground. We then

used the reconstructed 3-D motion of the robot to obtain the translational and

rotational velocity components of all robot parts.

3.5.6 Kinetic energy measurements

For each robot trial, we measured pitch and roll kinetic energy for all attempts.

We defined pitch and roll kinetic energy as the kinetic energy of the entire

robot due to translational and rotational velocities along body fore-aft and

lateral directions, respectively. Because vertical translation and yawing do not

contribute to body pitching or rolling towards self-righting, we did not consider

vertical velocities or rotational velocities about the vertical axis. Considering

that the five motors, leg, and mass added to the leg could be approximated as

regular, symmetric shapes with uniform mass distribution (motors and leg as

solid cuboids and added mass as a solid sphere), the moment of inertia at the

center of mass of each part could be directly calculated. Then, we calculated
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the total pitch and roll kinetic energy of the motors and leg with added mass

as:

KEpitch =
k∑︂

j=1
(1
2Iyy,jω

2
y,j + 1

2mjv
2
x,j) (3.7)

KEroll =
k∑︂

j=1
(1
2Ixx,jω

2
x,j + 1

2mjv
2
y,j) (3.8)

where j enumerates the five motors, leg, and mass added to the leg, Ixx,j and

Iyy,j are the moments of inertia of object j about the body fore-aft and lateral

principal axes (measured at the part’s center of mass), mj is the mass of object j,

and vx,j and vy,j are translational velocities of object j along fore-aft and lateral

directions of robot, and ωx and ωy are rotational velocities of object j about

fore-aft and lateral directions of the robot, respectively. For both the wings and

head with complex shapes, we imported their CAD model and approximated

them with uniformly distributed point mass clouds and calculated the pitch and

roll kinetic energy of each part as:

KEpitch,cloud = m

2k

k∑︂
j=1

v2
x,j (3.9)

KEroll,cloud = m

2k

k∑︂
j=1

v2
y,j (3.10)

where m is the total mass of the wing or head, k is the number of point masses

in the point cloud, and vx,i and vy,i are the velocity components of the ith point

mass along the body fore-aft and lateral principal axes.

To obtain total pitch and roll kinetic energy, we summed the pitch and roll

kinetic energy of all the parts. To compare pitch and roll kinetic energy at each

combination of wing opening and leg oscillation amplitudes, we first averaged
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the total pitch and roll kinetic energy respectively over the phase when wings

were fully open in the first attempt of each trial to avoid bias from the large

rolling kinetic energy during successful self-righting in later attempts. We then

averaged these temporal averages across the five trials at each combination of

wing opening and leg oscillation amplitudes (Figure 3.8A, B).
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3.6 Methods–Potential energy landscape
modelling

3.6.1 Model definition

The gravitational potential energy of the animal or robot is:

E = mgzCoM (3.11)

where m is the total mass of the animal or robot, g is gravitational acceleration,

zCoM is center of mass height from the ground. To determine the robot’s center

of mass, we used a CAD model of the robot (Figures 3.2A, Figure 3.3) and

measured the 3-D positions and orientations of all robot body parts for a given

body orientation and wing opening (see consideration of leg oscillation below).

We approximated the animal body as a rigid ellipsoid, with the animal’s center

of mass at the body geometric center, and its wings as slices of an ellipsoidal

shell. Because the animal or robot did not lift off during self-righting, in the

model we constrained the lowest point of the animal or robot to be always in

contact with the ground.

The potential energy depended on body pitch and roll, wing opening angle,

and leg oscillation angle. Because the effect of leg oscillation was modelled

as a part of kinetic energy, for simplicity, we set the leg to be held fixed in

the middle when calculating the potential energy landscape. We verified that

potential energy landscape did not change considerably (roll barrier changed

only up to 13%) when the leg moved. Because we used Euler angles for 3-D

rotations, change in body yaw did not affect center of mass height. Because the

robot’s initial wing opening was negative (-6°) due to body weight, in our model
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calculations, we varied wing opening angle within the range [-10º, 90°] with a

0.5° increment. For each wing opening angle, we then varied both body pitch

and roll within the range [-180°, 180°] with a 1° increment and calculated zCoM

to obtain the system potential energy (Figure 3.3). Because the animal or robot

did not pitch backward significantly, in the figures we do not show landscape

for body pitch < -90°; the full landscape maybe visualized using data and code

provided (Othayoth and Li, 2021a).

3.6.2 System state trajectories on potential energy
landscape

To visualize how the robot’s measured system state behaved on the landscape,

we first discretized each righting attempt into time intervals of 0.01 s. For each

interval, we used the measured the wing opening angle (Figure 3.3, dashed blue

curves) to calculate the potential energy landscape. We then projected the

measured body pitch and roll onto the landscape to obtain the system state

trajectory over time. Note that only the end point of the trajectory, which

represented the current state, showed the actual potential energy of the system

at the corresponding wing opening angle. The rest of the visualized trajectory

showed how body pitch and roll evolved but, for visualization purpose, was

simply projected on the landscape surface. The exact system state trajectories

are shown in Figure 3.11.

3.6.3 Potential energy barrier measurements

We measured the potential energy barrier that must be overcome to escape

from metastable basin to transition to an upright basin (Figure 3.9C, 3.13).
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For each wing opening angle (Figure 3.13B, dashed blue), at each time interval,

we considered imaginary straight paths away from the metastable local mini-

mum (Figure 3.9B, white dot) in the body pitch-roll space, parameterized by

the polar angle ψ from the positive pitch direction (body pitching up, Figure

3.9Ci). Along each path, we obtained a cross section of the landscape. Then,

we defined and measured the potential energy barrier along this path as the

maximal increase in potential energy in this cross section. Finally, we plotted

the potential energy barrier as a function of ψ (Figure 3.9C). We defined the

roll barrier as the lowest potential energy barrier within ψ = ± [45°, 135°],

because both roll upright minima always lay in this angular range. We defined

the pitch barrier as the potential energy barrier at ψ = 0° towards the pitch

local minimum. Finally, we measured both pitch and roll barriers as a function

of wing opening angle (Figure 3.13, Figure 3.14).

3.6.4 Comparison of kinetic energy and potential
energy barriers

To understand how wing opening and leg oscillation together contribute to the

robot’s self-righting, we compared the measured kinetic energy and potential

energy barriers along both pitch and roll directions throughout each attempt.

For each attempt, we measured kinetic energy minus potential energy barrier

over time along both pitch and roll directions (Figure 3.15, 3.16 A-C). We then

examined whether there was a surplus or deficit of kinetic energy to overcome

the potential energy barrier in both pitch and roll directions, comparing be-

tween successful and failed attempts (Figure 3.15D, 3.16D). To examine how

maximal surplus varied with wing opening and leg oscillation amplitudes, for
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each combination of the two, we recorded the maximal surplus when the wings

are held fully open in each attempt and averaged it across all attempts (Figure

3.15E vs. 3.16E).

3.6.5 Data analysis and statistics

We tested whether the animal’s percentage of time spent on winged and legged

self-righting attempts and self-righting probability changed with leg modifica-

tion using a mixed-effects ANOVA, with leg treatment as the fixed factor and

individual as a random factor to account for individual variability. We tested

whether the animal’s pitch and roll kinetic energy depended on leg modification

using ANOVA with leg treatment a fixed-factor. We tested whether the ani-

mal’s self-righting probability depended on leg treatment using a mixed-effect

ANOVA with leg treatment as a fixed factor and individual as a random factor.

We tested whether the robot’s self-righting probability, number of attempts

required to self-right, pitch and roll kinetic energy depended on leg oscillation

amplitude at each wing opening amplitude using a chi-squared test for prob-

ability and an ANOVA for the rest, with wing opening magnitude as a fixed

factor. We tested whether kinetic energy minus potential energy barrier along

the pitch and roll directions depended on leg oscillation amplitude at each wing

opening amplitude, using ANOVAs with leg oscillation amplitude as the fixed

factor. We also tested whether they depended on wing opening amplitude at

each leg oscillation amplitude, using ANOVAs with wing opening amplitude as

the fixed factor. To test whether kinetic energy minus potential energy barrier

differed between successful and failed attempts, we used an ANOVA with the

attempt outcome (success or failure) as the fixed factor.
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3.7 Results

3.7.1 Leg flailing facilitates animal winged self-righting

As leg modification increased the animal’s average kinetic energy in both pitch

and roll directions (by 2 and 10 times, respectively; Figures 3.4A, 3.6; P < 0.05,

ANOVA), its probability of self-righting using wings increased (Figure 3.4B; P

< 0.0001, mixed-effect ANOVA). These observations supported our hypothesis.

Leg modification did not change the animal’s relative preference of using winged

and legged self-righting strategies (Figure 3.5). In addition, wing opening and

leg flailing did not show temporal correlation. Furthermore, the approximate

time period of leg flailing (100 ms) was comparable to combined sensory feedback

(6-40 ms (Ritzmann et al., 2012) and neuromuscular (45 ms (Sponberg and Full,

2008)) delays. These, combined with the fact that previous studies observed

minimal proprioceptive sensory input from legs during flailing (Camhi, 1977;

Delcomyn, 1987; Zill, 1986), indicate that leg flailing was more feedforward-

driven than a feedback-controlled reflex coordinated with wing opening (Figure

3.6). Moreover, large trial-to-trial variations in the number of attempts required

to self-right showed that the animal’s self-righting was stochastic (Figure 3.7).
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Figure 3.4: Animal’s kinetic energy and self-righting probability. Comparison
of (A) average pitch and roll kinetic energy and (B) self-righting probability
between intact animals and animals with modified hind legs. Error bars in show
± s.d. Asterisk indicates a significant difference (P < 0.05) and n.s. indicates
none. Statistical tests: Pitch kinetic energy: P = 0.34, F1,1 = 1.53, ANOVA.
Roll kinetic energy: P = 0.02, F1,1 = 50.35, ANOVA. Probability: P < 0.0001,
F1,29 = 93.38, mixed-effect ANOVA. Sample size: (A) N = 2 animals, n = 2
trials. (B) Intact: N = 30 animals, n = 150 trials. Modified: N = 30 animals,
n = 150 trials. Reproduced from Othayoth and Li, 2021.
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Figure 3.5: Comparison of average percentage of time spent on winged and
legged self-righting attempts between animals with intact and modified legs.
Error bars show ± s.d. n.s. indicates no significant difference. Winged: P
= 0.19, F1,269 = 1.71; legged: P = 0.78, F1,269 = 0.07 mixed-effect ANOVA.
Sample Size: N = 30 animals, n = 150 trials for each treatment. Reproduced
from Othayoth and Li, 2021.
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of animal for calculating pitch and roll kinetic energy. Red and blue arrows
show velocity components that contribute to pitch and roll kinetic energy, re-
spectively. (C) Pitch and roll kinetic energy as a function of time for animal with
(i) intact and (ii) modified hind legs from a representative trial. Reproduced
from Othayoth and Li, 2021.
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Figure 3.7: Correlation between animal’s body and leg motion. (A-C) Pair-
wise normalized cross correlations between left hind leg tip height, right hind
leg tip height, and abdomen tip height, as a function of lag between each pair
of variables. (D-F) Normalized autocorrelation of left hind leg tip height, right
hind leg tip height, and abdomen tip height as a function of lag between a
variable and itself. N = 1 animal, n = 1 trial. Reproduced from Othayoth and
Li, 2021.
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3.7.2 Wing opening and leg flailing together facilitate
robot self-righting

The robot’s self-righting performance increased with both wing opening ampli-

tude θwing and leg oscillation amplitude θleg (Figure 3.8). Similar to the animal,

the robot’s self-righting was stochastic, with large trial-to-trial variation in the

number of attempts required to self-right and body pitching and rolling mo-

tions (Figures 3.11, 3.12 ). For each θwing tested, as θleg increased, average roll

kinetic energy increased (Figure 3.8B; P < 0.0001, ANOVA) and the robot’s

self-righting probability increased (Figure 3.8C; P < 0.0001, Nominal logistic

regression), reaching one at higher θleg. Meanwhile, the number of attempts

required for self-righting decreased (Figure 3.8D; P < 0.05, ANOVA). At the

maximal θleg tested (45°), the robot always self-righted (3.8C) and always did

so in the first wing opening attempt (Figure 3.8D). Together, these results

demonstrated that wing opening and leg flailing together facilitate the robot’s

self-righting performance over the wide range of parameter space tested.
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Figure 3.8: Robot’s kinetic energy and self-righting performance. (A, B) Av-
erage pitch and roll kinetic energy during self-righting as a function of leg os-
cillation amplitude θleg at different wing opening amplitudes θwing. (C, D)
Self-righting probability and average number of attempts required to self-right
as a function of θleg at different θwing. Error bars in A, B, and D are ± s.d.,
and those in C are confidence intervals of 95%. Asterisks indicate a significant
dependence (P < 0.05) on θleg at a given θwing and n.s. indicates none. See
Figure 4 source data for detail of statistical tests. Sample size: Kinetic energy:
n = 20 attempts at each wing opening amplitude. Self-righting probability and
number of attempts: n = 58, 42, and 34 attempts at θwing = 60°, 72°, and 83°.
For kinetic energy, only the first attempt from each trial is used to measure the
average to avoid bias from large pitching or rolling motion during subsequent
attempts that self-right. Reproduced from Othayoth and Li, 2021.
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Figure 3.9: Robot’s self-righting motion and potential energy landscape. (A)
Snapshots of reconstructed robot upside down (i), in metastable state (ii), self-
righting by pitch (iii) and roll (iii’) modes, and upright afterwards (iv, iv’). (B)
Snapshots of potential energy landscape at different wing opening angles corre-
sponding to (A) i, ii, iii. Dashed curves are boundary of upside-down/metastable
basin. Green dots show saddles between metastable basin and the three upright
basins. Gray curves show constant potential energy contours. Black, dashed
blue, and red curves are representative trajectories of being attracted to and
trapped in metastable basin, self-righting by pitch mode, and self-righting by
roll mode, respectively. i, ii, iii in (A, B) show upside-down (1), metastable
(2), and upright (3iii, iii’) states. (C) Polar plot of potential energy barrier to
escape from upside-down or metastable local minimum along all directions in
pitch-roll space. Ψ is polar angle defining direction of escape in body pitch-roll
space. Green arrow in (i) shows direction of upright minima at pitch = 180°
(Ψ = 0°). Black circle shows scale of energy barrier (100 mJ). Blue and red
arrows in (ii) define pitch and roll potential energy barriers. Blue and red error
bars in (iii) show average maximal pitch and roll kinetic energy, respectively.
Reproduced from Othayoth and Li, 2021.
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Figure 3.10: Animal’s potential energy landscape. Snapshots of potential en-
ergy landscape at different wing opening angles. Black curve is representative
trajectories of failed attempts and dashed blue and red curves are for success-
ful attempt by pitch mode and self-righting by roll mode, respectively. Thin
black curves on landscape are constant potential energy contours. Dashed black
curves show boundary of upside-down/metastable basins. Green dots show sad-
dles between metastable basin and the three upright basins. Reproduced from
Othayoth and Li, 2021.
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3.7.3 Robot self-righting resembles animal’s

The robot’s winged self-righting behavior resembled that of the discoid cock-

roach in multiple aspects (Figures 3.1, 3.9A, 3.10). First, it often took the robot

multiple attempts (Figure 3.8D) to self-right probabilistically (Figure 3.8C). In

addition, as the wings opened, the robot’s body pitched up (Figure 3.9Ai), and

the head and two opened wings formed a triangular base of support in which

the center of mass projection fell (metastable state, Figure 3.9Aii). In failed

attempts, after the wings opened fully, the robot was unable to escape this

metastable state by either pitching over the head or rolling sideways and fell

back to the ground upside-down as the wings closed (Figure 3.9A). In success-

ful attempts, the robot escaped the metastable state and always self-righted by

rolling to either side (Figure 3.9Aiii’-iv’, red). Moreover, the robot never lifted

off the ground during self-righting. Finally, the robot’s motion trajectories in

the space of body pitch, roll, and center of mass height were stereotyped for

both failed and successful attempts (Figures 3.11, 3.12), although they are also

stochastic with trial-to-trial variations in body pitch and roll.

3.7.4 Robot and animal have similar evolving potential
energy landscapes

For both the animal and robot, the potential energy landscape over body pitch-

roll space were similar in shape, and both changed in a similar fashion as the

wings opened (Figures 3.9, 3.10). This is expected because the animal and robot

were geometrically similar (Table 2). When the wings were fully closed, the

potential energy landscape had a local minimum at near zero body pitch and roll

(Figure 3.9Bi). This is because either pitching or rolling of the body from being
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upside-down increases center of mass height and thus gravitational potential

energy. Hereafter, we refer to this local minimum basin as the upside-down

basin. The landscape also had three other local minima corresponding to the

body being upright . One local minimum at (body pitch, roll) = (180°, 0°) could

be reached from the upside-down basin by pitching forward (Figure 3.9A, blue

dot). Two local minima at (body pitch, roll) = (0°, ±180°) could be reached by

rolling left or right (Figure 3.9Aiii’-iv’, red and blue curves are for roll and pitch

modes respectively). Hereafter, we refer to these basins as pitch and roll upright

basins, respectively. Transition from one basin to another required overcoming

the potential energy barrier separating them (Figure 3.9B, dashed black curve).

As the wings opened, both the robot’s and animal’s potential energy landscape

and its equilibria changed (Figure 3.9B, 3.10). The upside-down basin evolved

into a metastable basin around a local minimum with a positive pitch and zero

roll (Figures 3.9Bii, 3.10Aii, white dot). This local minimum corresponded to

the metastable state with the triangular base of support (Figures 3.9Aii, 3.1B).

The more the wings opened, the higher the pitch of this local minimum was.

To self-right via either the pitch (Figures 3.9Aiii-iv, 3.1Aiii-iv) or roll (Figures

3.9Aiii’-iv’, 3.1Aiii’-iv’) mode, the system state must escape from the metastable

basin to reach either the pitch or a roll upright basin (e.g., Figure 3.9Biii, blue

and red curves).
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3.7.5 Self-righting transitions are destabilizing,
barrier-crossing transitions on landscape

Reconstruction of the robot’s 3-D motion on the potential energy landscape

revealed that its self-righting transitions are probabilistic barrier-crossing tran-

sitions (Figure 3.11). Except when the robot was upright, upside-down, or

metastable, it was always statically unstable and its system state was strongly

attracted to one of these three local minima basins. At the beginning of each

attempt, the system state was in the upside-down basin. As the wings opened,

it was attracted towards the metastable basin that emerged. In failed attempts,

the system state was trapped in the metastable basin and unable to escape it

(Figure 3.11, black curves). In successful attempts, it crossed a potential energy

barrier (Figure 3.9B, dashed black curve) to escape the metastable basin and

reach a roll upright basin (Figure 3.11, white curves). These observations are in

accord with the animal’s center of mass height measurements at the beginning,

maximal pitch, and end of each attempt from the previous study (Li et al.,

2019) projected onto the animal’s potential energy landscape (Figure 3.2 C, D).
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Figure 3.11: Robot state trajectories on potential energy landscape. (A) θwing

= 60°. (B) θwing = 72°. (C) θwing = 83°. Columns i and ii show successful
(white) and failed (black) self-righting attempts, respectively. n is the number
of successful/failed attempts at each θwing. Note that only the end point of
the trajectory, which represented the current state, showed the actual potential
energy of the system at the corresponding wing opening angle. The rest of the
visualized trajectory showed how body pitch and roll evolved but, for visualiza-
tion purpose, was simply projected on the landscape surface. Gray lines show
energy contours. Green dots show saddles between metastable basin and the
three upright basins. Reproduced from Othayoth and Li, 2021.
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3.7.6 Self-righting via rolling overcomes smaller barrier
than via pitching

For both the animal and robot, the potential energy landscape model allowed

us to quantify the potential energy barrier for self-righting via the pitch and roll

modes. The barrier to escape the metastable state to self-right varied with the

direction along which the system moved in the body pitch-roll space (Figures

3.9C, 3.13C, 3.14). We defined the pitch and roll barriers as the minimal barriers

to escape from the metastable local minimum towards the pitch and roll upright

basins (Figure 3.9C, blue and red arrow). At all wing opening angles up to 90°,

the roll barrier was always lower than the pitch barrier (Figures 3.9C, 3.13C,

3.14C).

3.7.7 Barrier reduction by wing opening facilitates
self-righting via rolling

For both the animal and robot, as wing opening angle increased, both the pitch

and roll barrier decreased monotonically (Figure 3.13C). As the wings opened

to the range of θwing tested (Figure 3.13C, gray band), the pitch barrier was

still much greater than the average pitch kinetic energy (Figure 3.13C, 3.14C,

solid curve vs. dashed blue line). By contrast, the roll barrier was lowered

to a similar level as the average roll kinetic energy (Figure 3.13C, solid curve

vs. dashed red line). This explained why the modified animal, with its higher

average kinetic energy, self-righted at a higher probability than the intact animal

(Figure 3.14 solid vs. dashed lines). These findings demonstrated that, even

though wing opening did not generate sufficient kinetic energy to self-right by

pitching (Figure 3.13C), it reduced the roll barrier so that self-righting became
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possible using small, perturbing roll kinetic energy from leg flailing.

To further confirm this, we compared the robot’s kinetic energy with poten-

tial energy barrier along the pitch and roll directions respectively during each

attempt (Figures 3.15, 3.16). The robot’s pitch kinetic energy was insufficient

to overcome even the reduced pitch barrier in both failed and successful at-

tempts (Figure 3.16). By contrast, as wing opening and leg flailing amplitudes

increased, the robot’s roll kinetic energy more substantially exceeded the roll

barrier during successful attempts (Figure 3.15; P < 0.001, nominal logistic

regression), and the surplus enabled it to self-right via rolling.

126



Figure 3.12: Robot’s stereotyped body motion during self-righting. State tra-
jectories in body pitch, body roll, and center of mass height space. (A) θwing =
60°. (B) θwing = 72°. (C) θwing = 83°. Columns i and ii show successful and
failed self-righting attempts, respectively. n is the number of successful or failed
attempts at each θwing. Reproduced from Othayoth and Li, 2021.
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Figure 3.13: Robot’s potential energy barriers for self-righting via pitch and roll
modes. (A) Potential energy during self-righting via pitch mode as a function
body pitch and wing opening angle. (B) Potential energy during self-righting
via roll mode as a function of body roll and wing opening angle. Dashed white
curves in A and B show energy of metastable state. Dashed black curve in A and
B shows maximal energy when pitching forward or rolling from metastable state,
respectively. Vertical upward arrows define pitch (A) and roll (B) barriers at a
few representative wing opening angles. (C) Pitch (blue) and roll (red) barrier
as a function of wing opening angle. Blue and red dashed lines show average
maximal pitch and roll kinetic energy, respectively. Gray band shows range of
wing opening amplitudes tested. Inset shows the same data magnified to better
show kinetic energy. Reproduced from Othayoth and Li, 2021.
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Figure 3.14: Animal’s potential energy barriers for self-righting via pitch and
roll modes. (A) Potential energy of self-righting via pitch mode as a function
body pitch and wing opening amplitude. (B) Potential energy of self-righting via
roll mode as a function of body roll and wing opening amplitude. Dashed white
curves in A and B show energy of metastable state. Dashed black curve in A
and B shows maximal energy when pitching forward or rolling from metastable
state, respectively. Vertical arrows define pitch (A) and roll (B) barriers at a
few representative wing opening angles. (C) Pitch (blue) and roll (red) barrier
as a function of wing opening angle. Dashed and solid horizontal lines show
the intact (dashed) and modified (solid) animal’s average pitch kinetic energy
(blue) and average roll kinetic energy (red), respectively. Inset shows the same
data magnified to better show kinetic energy. Reproduced from Othayoth and
Li, 2021.
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Figure 3.15: Comparison between robot’s kinetic energy and potential energy
barrier along roll direction. (A) Roll kinetic energy, (B) roll potential energy
barrier, and (C) roll kinetic energy minus potential energy barrier along roll
direction over time for a representative successful and failed attempt. Between
two vertical dashed lines is when wings are held fully open. (D) Surplus along
roll direction over time for all attempts from all trials. The attempts are grouped
along vertical axis, based on increasing leg oscillation amplitude θleg. For each
θleg, the attempts are further grouped along by different wing opening am-
plitudes θwing (increasing along upward direction). Columns (i) and (ii) are
successful and failed attempts. Asterisk indicates significant difference in roll
kinetic energy minus potential energy barrier between successful and failed at-
tempts. (E) Average of maximal roll kinetic energy minus potential energy
barrier, as a function of wing opening amplitude and leg oscillation amplitude.
Red and blue show surplus and deficit of roll kinetic energy minus potential
energy barrier, respectively. n = 134 attempts. See Figure 7—source data 1 for
results of statistical tests. Reproduced from Othayoth and Li, 2021.
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Figure 3.16: Comparison between robot’s pitch kinetic energy and pitch poten-
tial energy barrier. (A) Kinetic energy, (B) potential energy barrier, and (C)
kinetic energy minus potential energy barrier as a function of time for a rep-
resentative successful (i) and failed (ii) attempt. Between two vertical dashed
lines is when wings are held fully open. (D) Pitch kinetic energy minus poten-
tial energy barrier as a function of time of all attempts from all trials. Along
vertical axis, attempts are grouped into increasing leg oscillation amplitude θleg.
For each θleg, attempts are further grouped into increasing wing opening ampli-
tudes θwing. Columns (i) and (ii) are successful and failed attempts. Asterisk
indicates significant difference in pitch kinetic energy minus potential energy
barrier between successful and failed attempts. (E) Average of maximal pitch
kinetic energy minus potential energy barrier when wings are fully open as a
function of θwing and θleg. Red and blue show surplus and deficit of pitch kinetic
energy minus potential energy barrier, respectively. n = 134 attempts. See Fig-
ure 7—source data 1 for results of statistical tests. Reproduced from Othayoth
and Li, 2021.
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3.8 Discussion

We integrated animal experiments, robotic physical modeling, and potential en-

ergy landscape modeling to discover the physical principles of how the discoid

cockroach use propelling and perturbing appendages (wings and legs, respec-

tively) together to achieve strenuous ground self-righting. Ground self-righting

transitions are stochastic, destabilizing barrier-crossing transitions on a poten-

tial energy landscape. Even though propelling appendages cannot generate suf-

ficient kinetic energy to cross the high potential energy barrier of this strenuous

locomotor task, they modify the landscape and lower the barriers in other di-

rections sufficiently so that kinetic energy from perturbing appendages can help

cross them probabilistically to self-right. Compared to only using propelling

or perturbing appendages alone, using them together makes self-righting more

probable and reduces the number of attempts required, increasing the chance

of survival.

Although the intact animal’s average kinetic energy from hind leg flailing

was not sufficient to overcome the potential barrier at the range of wing opening

observed, it still self-righted at a small but finite probability (Figure 3.4B). This

was likely because of the additional kinetic energy from flailing of fore and mid

legs, small forces from legs scraping the ground, as well as abdominal flexion

and twisting and passive wing deformation under load (Li et al., 2019), both of

which induce lateral asymmetry and tilts the potential energy landscape towards

one side and lowers the roll barrier. This consideration further demonstrates

the usefulness of co-opting a variety of appendages for propulsion and perturba-

tion simultaneously to achieve strenuous ground self-righting. Such exaptation
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(Gould and Vrba, 1982) of multiple types of appendages that evolved primar-

ily for other locomotor functions for self-righting is likely a general behavioral

adaptation and should be adopted by terrestrial robots.

3.8.1 Stereotyped motion emerges from physical
interaction constraint

Our landscape modeling demonstrated that the stereotyped body motion dur-

ing strenuous leg-assisted, winged self-righting in both the animal and robot

is strongly constrained by physical interaction of the body and appendages

with the environment. The stereotyped repeated body pitching up and down

during failed attempts and rolling during successful attempts directly result

from the strong attraction of the system state to the landscape basins, which

directly arise from physical interaction of body/appendages with the ground.

This finding suggested that potential energy landscape modeling can be used to

understand stereotyped ground self-righting strategies of other species (Ashe,

1970; Domokos and Várkonyi, 2008; Golubović et al., 2013; Li et al., 2019;

O’Donnel, 2018) and even infer those of extinct species (analogous to (Gatesy,

Bäker, and Hutchinson, 2009)). Similarly, it will inform the design and control

of self-righting robots (e.g., Caporale et al., 2020; Kessens, Smith, and Osteen,

2012).

Although only demonstrated in a model system, the potential energy land-

scape approach can in principle be applied to more complex and different self-

righting behaviors, as well as on ground of different properties (Sasaki and Non-

aka, 2016), to understand how propelling and perturbing effects work together.

For example, as the ground becomes more rugged with larger asperities, the
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landscape becomes more rugged with more attractive basins (Figure 3.17). In

addition, for leg-assisted, winged self-righting, we can add degrees of freedom for

fore and mid leg flailing, abdomen flexion and twisting, and even passive wing

deformation due to load (Li et al., 2019) to create fine-grained potential energy

landscapes to understand how these motions may emerge from physical interac-

tion constraints. We can also understand legged self-righting by modeling how

the legs and deformable abdomen (Li et al., 2019) affect the potential energy

landscape when wings are not used. This broad applicability will be useful for

comparative studies across species, strategies, and even environments, such as

understanding why some cockroach species’ self-righting is more dynamic than

others (Li et al., 2019). However, this approach does not apply to highly dy-

namic self-righting strategies, such as those using jumping (Bolmin et al., 2017;

Kovac et al., 2008) where kinetic energy far exceeds the potential energy barrier.

3.8.2 Towards potential energy landscape theory of
self-righting transitions

The potential energy landscape model here does not describe self-righting dy-

namics. Recent dynamic modeling using multi-body dynamics simulations (Xuan

and Li, 2020b) and dynamical templates (Xuan and Li, 2020a) in our lab re-

vealed that wing-leg coordination affects self-righting by changing the mechani-

cal energy budget (Xuan and Li, 2020a) and that the randomness in the animal’s

motion helps it self-right (Xuan and Li, 2020b). However, these approaches have

their limitations: multi-body dynamic simulations are effectively experiments

on a computer; dynamical templates are increasingly challenging to develop as

system degrees of freedom increases. Further development of a potential energy
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landscape theory that adds stochastic, non-conservative forces to predict how

the system “diffuses” across landscape barriers (analogous to Socci, Onuchic,

and Wolynes, 1996) may be a relatively simple yet intuitive way to model prob-

abilistic barrier-crossing dynamics.
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Chapter 4

Tracking and reconstructing
large obstacle interaction of
small animals using a terrain
treadmill

This chapter is a paper by Ratan Othayoth*, Blake Strebel*, Yuanfeng Han,

Evains Francois, and Chen Li (*equal contributions) under review in The Jour-

nal of Experimental Biology (2021) (Othayoth et al., 2021a).

4.1 Author Contributions

Ratan Othayoth implemented 2-D tracking and 3-D reconstruction, analyzed

data, created visualizations, and wrote the paper; Blake Strebel designed and

constructed the treadmill, implemented the treadmill control system, and wrote

an early draft; Yuanfeng Han designed the treadmill and assisted construction;

Evains Francois collected animal data for testing treadmill performance; Chen

Li. oversaw the study, designed the treadmill, created visualizations, and wrote

the paper.
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4.2 Introduction

In nature, terrestrial animals often move through spatially complex, three-

dimensional terrain ((Dickinson et al., 2000). Small animals are particularly

challenged to traverse many obstacles comparable to or even larger than them-

selves (Kaspari et al., 1999). By contrast, the majority of laboratory stud-

ies of terrestrial locomotion have been performed on flat surfaces (Alexander

and Jayes, 1983; Blickhan and Full, 1993; Cavagna, Thys, and Zamboni, 1976;

Diederich, Schumm, and Cruse, 2002; Ferris, Louie, and Farley, 1998; Full and

Tu, 1990; Koditschek, Full, and Buehler, 2004; Li, Hsieh, and Goldman, 2012;

Minetti et al., 2002; Moritz and Farley, 2003; Spagna et al., 2007; Spence et al.,

2010), either rigid or with various surface properties (friction, slope, solid area

fraction, stiffness, damping, ability to deform and flow, etc.).

Recent laboratory studies have begun to advance our understanding of an-

imal locomotion in complex terrain with obstacles (Birn-Jeffery and Daley,

2012; Blaesing, 2004; Collins et al., 2013; Daley and Biewener, 2006; Dürr

and Schilling, 2018; Gart et al., 2018; Gart and Li, 2018; Harley, English,

and Ritzmann, 2009; Kohlsdorf and Biewener, 2006; Li et al., 2015; Olberding,

McBrayer, and Higham, 2012; Parker and McBrayer, 2016; Sponberg and Full,

2008; Theunissen, Vikram, and Dürr, 2014; Tucker and Mcbrayer, 2012). Be-

cause of typical laboratory space constraints, the terrain arenas used in these

studies are usually no larger than a few dozen body lengths in each dimension.

Thus, they only allow experiments at relatively small spatiotemporal scales be-

yond 10 body lengths and 10 movement cycles. It remains a challenge to

study animal locomotion in complex 3-D terrain with large obstacles at larger
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spatiotemporal scales.

Experiments at large spatiotemporal scales are usually realized by treadmills

to keep the animal (including humans) stationary relative to the laboratory

(Buchner et al., 1994; Darken, Cockayne, and Carmein, 1997; Full, 1987; Her-

reid and Full, 1984; Jayakumar et al., 2019; Kram et al., 1998; Stolze et al., 1997;

Watson, Ritzmann, and Pollack, 2002; Weinstein and Full, 1999). However, only

small obstacles can be directly mounted on such treadmills (Voloshina et al.,

2013); larger obstacles have to be dropped onto the treadmill during locomo-

tion (Park, Wensing, and Kim, 2015; Snijders et al., 2010). Furthermore, such

linear treadmills allow only untethered movement along one direction. Alter-

natively, spherical treadmills use lightweight spheres of low inertia suspended

on air bearing (kugels) to allow small animals to rotate the spheres as they

freely change their movement speed and direction, (Bailey, 2004; Okada and

Toh, 2000; Ye, Dowd, and Comer, 1995). However, the animal is tethered, and

obstacles cannot be used.

Previous members of our lab created a terrain treadmill (Figure 4.1A, B)

that enabled large spatiotemporal scale, high-resolution observations of small

animal locomotion in complex terrain with large obstacles. The terrain treadmill

design was inspired by a celestial globe model. The terrain treadmill consists

of a transparent, smooth, hollow, outer sphere rigidly attached to a concentric,

solid, inner sphere using a connecting rod (Figure 4.1A). Terrain modules can

be attached to the inner sphere (Figure 4.1) to simulate obstacles that small

animals encounter in natural terrain. The outer sphere is placed on an actuator

system consisting of three actuated omni-directional wheels (Figure 4.1A). An

overhead camera captures videos of the animal moving on top of the inner
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Figure 4.1: Terrain treadmill. (A) Design of terrain treadmill. Colored elements
show example modular terrain that can be used. (B, C) Terrain treadmill, with
(B) sparsely and (C) densely spaced vertical pillars as example terrain modules.
ArUCo markers attached on the inner sphere are also shown in (B, C). The
treadmill was designed and manufactured by Blake Strebel and Yuanfeng Han.
Images courtesy of Blake Strebel.

sphere, with an ArUCo (Garrido-Jurado et al., 2014) marker attached on its

body. The animal’s position estimated from tracking the marker is used by a

feedback controller to actuate the connected spheres with the opposite velocity

to keep the animal on top (Figure 4.3D, E) as it moves through the obstacle

field (Figures 4.3A-C, 4.4A, B,).

We used discoid cockroaches (Blaberus discoidalis) to test the treadmill’s

ability to elicit free locomotion and measure animal-terrain interaction over

large spatiotemporal scales. We put the animal inside the outer sphere and

then sealed it. To pick and place the animal onto the inner sphere, we attached

a square magnet (16mm side length, 3.5g) on the animal’s dorsal side, with an

ArUCo marker attached to it for tracking (4.4A, B). We used a larger magnet

to pick up and move the animal to the top of the treadmill and dropped it onto

the inner sphere. We then started the control program to keep the animal on
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top. The images recorded by the camera were then sent to the ROS program,

which first saved each frame in its native format (a bagfile) and then processed

the image to track the marker position. Based on the tracked and then filtered

marker position, which were used to calculate the velocity of the animal through

forward kinematics, motor velocities required to keep the animal centered on

were calculated and commanded to the motors.

The terrain treadmill elicited sustained locomotion of discoid cockroaches (N

= 5 animals, n = 12 trials, sparse obstacles) through both sparse (Figure 4.1B)

and cluttered (Figure 4.1C) pillar obstacle. Even with cluttered obstacles, where

gaps between obstacles were smaller than animal body width, the treadmill was

able to elicit continuous trials, in which the animal moved through pillars for

25 minutes (≈ 2500 stride cycles) over 67 m (≈ 1500 body lengths). For 83%

of the experiment duration, the terrain treadmill contained the animal within a

circle of radius 4 cm (0.9 body length) centered about the image center (Figure

4.2D, E) even at locomotion speeds of up to 10 body length/s (peak speed of 50

cm/s). A Kalman filter (Harvey, 1990) estimated the position of animals and

reduced the noise and error in marker tracking. The Kalman filter continued to

estimate the animal’s position even when the marker was obscured from body

rolling (Figure 4.3A) or the outer sphere’s seam. In addition, the animal freely

explored and visited almost the entire obstacle field (Figure 4.4C, D).
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4.3 Methods

My specific contribution to this work was that I developed methods for tracking

and reconstruction of 3-D motion during large obstacle interaction of small

animals. These methods enabled estimation of different metrics such as body

velocities and antennal planar orientation relative to the body heading (Figures

4.4, 4.2,).

4.3.1 Data analysis

Previously, after each experiment, the recorded images were saved as bagfiles.

The bagfiles were retrieved processed using custom MATLAB code to extract

the saved images for post processing.

4.3.2 Measuring animal movement in obstacle field

To measure the animal’s movement relative to the pillar obstacle field, we first

measured the movement of the pillar obstacle field (i.e., treadmill rotation)

relative to the camera. We attached 31 ArUCo markers to the inner sphere,

with one each at the center of hexagonal and pentagonal regions of the soccer

ball pattern projected on the sphere (Figure 4.2A). We then separately created

a map of all markers attached on the inner sphere (referred to as marker map)

using ArUCo Marker-mapper application. Because each marker and its four

corners were fixed relative to the coordinate frame attached to the inner sphere

(i.e., T3 is known, Figure 4.2A), when one of the markers on sphere is tracked

(i.e., T1 can be measured, Figure 4.2A), the relative pose between sphere body

frame and the camera (Figure 4.2A, T4) can be computed. When more than
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Figure 4.2: Measuring motion of animal exploring sparse pillar fields. (A)
Coordinate frame transformation to measure animal motion relative to sphere.
Solid black arrows are relative 3-D poses (T1, T2 and T3) that are known or
measured directly from acquired images. Dashed arrows are the two relative
3-D poses (T4 and T5) that are calculated from measurements to obtain animal
motion relative to the sphere. Yellow squares with red and green lines show
the markers attached to the sphere and their x and y axes, respectively. Thick
green and blue lines show the y and z axes of the frame attached to the inner
sphere. (B) Histogram of left (θleft, blue) and right (θright, red) antenna planar
orientation relative to body heading (see schematic on right for definition). (C)
Accuracy of antenna-pillar contact detection outcomes. N = 3 animals, n = 3
trials. Reproduced from Othayoth et al., 2021a.
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one marker on the sphere is detected, relative pose of sphere and camera can

be computed by solving the Perspective-n-points problem (Lepetit, Moreno-

Noguer, and Fua, 2009), which estimates camera pose from a known set of 3D

points (marker corners) and the corresponding 2D coordinates in the image. The

‘solvePnP’ program in in image processing toolboxes in MATLAB or OpenCV

may be used to for this purpose. Because the animal’s movement relative to the

camera (Figure 4.2A, T2) is directly available from tracking via the calibrated

camera, the animal’s pose relative to the sphere body frame and hence relative

to the terrain obstacle field can be calculated (Figure 4.2A, T5). Because the

ArUCo marker attached to the animal is not necessarily at its center of mass,

a constant position and orientation offset must be manually determined and

added.

4.3.3 Unwrapped 2-D trajectory

Considering that the sphere diameter is ≈ 9× that of animal body length,

we approximated the immediate region surrounding the animal to be flat and

estimated the animal’s equivalent 2-D planar trajectory. To obtain the 2-D tra-

jectory, we integrated the body forward and lateral translational velocities and

body yaw angular velocity (Figure 4.4F-G) over time, with the initial position

at origin and body forward axis along x axis. Because during portions of a trial

the animal body marker was not tracked for a long duration, we did not con-

sider those video frames. As a result, each trial was assumed to be composed of

multiple segments, and each of their equivalent 2-D trajectories were assumed

to have the same initial conditions as described above (Figure 4.4E).
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4.4 Results

4.4.1 Free locomotion at large spatiotemporal scales

For 83% of the experiment duration, the terrain treadmill contained the animal

within a circle of radius 4 cm (0.9 body length) centered about the image center

(Figure 4.2D, E) even at locomotion speeds of up to 10 body length/s (peak

speed of 50 cm/s). In addition, over the course of 12 trials, the animal freely

explored and visited almost the entire obstacle field (Figure 4.4C, D). Finally,

the animal’s motion relative to the treadmill was used to estimate metrics such

as body velocity components (Figure 4.2F-H), antenna planar orientation rela-

tive to the body heading (Figure 4.2B), and unwrapped 2-D trajectories (Figure

4.4E).

4.4.2 Animal-obstacle interaction

We measured and reconstructed the animal-terrain interaction for 12 trials in

which the animal freely explored the sparse obstacle field (Figure 4.4). The

ArUCo markers attached on the animal and the inner sphere, allowed measur-

ing and reconstructing animal motion relative to obstacle field (see ‘Measuring

animal movement in obstacle field’ in Methods). Because lighting was not op-

timized, the pillar shadow resulted in substantial variation of the background,

and because the left and right antenna are visually similar and often moved

rapidly, automated antenna tracking was accurate in only ≈ 40% of frames

after rejecting inaccurately tracked data (see ‘Automated animal tracking’ in

Methods). However, this can be improved with refinement of our experimental

setup in future (see Discussion).
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Figure 4.3: Animal behavior and performance of the treadmill. (A-C) Repre-
sentative snapshots of behaviors including (A) body rolling, (B) body pitching
and pillar climbing, and (C) antennal sensing observed during free exploration
of terrain. (D) Probability of animal’s detected location in the image. Red circle
of radius 2 animal body lengths is centered at the image center. (E) Cumulative
histogram of animal’s radial position (in body lengths) from the center of the
image. Vertical and horizontal red lines show a radius of red circle in (A) and
the percentage of frames in which animal’s position was maintained within this
circle. N = 5 animals, n = 12 trials. Reproduced from Othayoth et al., 2021a.
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Figure 4.4: Representative metrics and 3-D reconstruction of animal exploring
sparse pillar obstacle field. (A, B) Representative snapshot and reconstruction of
animal moving through sparse pillar obstacle field. Transparent green ellipsoid
in (A) and brown ellipsoid in (B) show approximated animal body. Red and
blue dots show antenna tips. Yellow dot shows the tracked point on animal’s
head. Dashed cyan circle is the base of the two pillars with which the animal’s
antenna is interacting. (C, D) Ensemble of trajectories (D) and probability
density distribution of animal center of mass (E) during free exploration of
sparse pillar obstacle field, N = 5 animals, n = 12 trials. (E) Unwrapped 2-D
trajectories of animal, obtained by integrating forward and lateral translational
velocities and yaw angular velocity over duration of trial. (F-H) Histogram
of animal’s (F) forward and (G) lateral translational velocities and (H) yaw
angular velocity. Reproduced from Othayoth et al., 2021a.

We then detected which pillar the animal’s antennae contacted (Figure 4.4A,

B) by measuring the minimum distance from each antenna to all nearby pillars.

To determine which pillar the antenna interacted with, we determined whether

any pillars where within 3 cm from both antennae and which among them

were closest to both antennae. We also manually identified the antenna pillar

contact, which served as the ground truth. The antenna-pillar contact detected

automatically was accurate in over 70% of the contact instances (Figure 4.2C).
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4.4.3 Multiple behaviors and behavioral transitions

In addition to walking or running while freely exploring the obstacle field, the

animal displayed other behaviors during interaction with the terrain. For ex-

ample, when moving in dense obstacle field, the animal often rolled its body

in to the narrow gap between the pillars (Figure 4.3A) to traverse and occa-

sionally climbed up the pillars Figure 4.3B). In sparse obstacle field, the animal

often swept its antennae during free exploration (Figure 4.3C). The animal also

transitioned between these behaviors and occasionally stopped moving.

149



4.5 Discussion

A reconfigurable laboratory platform allowed large spatiotemporal scale mea-

surements of small animal locomotion through complex terrain with large obsta-

cles. Compared to existing locomotion arenas, our device increased the limits

of experiment duration by ∼ 100× and traversable distance by 100×. Such

large spatiotemporal scales may be useful for studying spatial navigation and

memory (Collett, Chittka, and Collett, 2013; Varga et al., 2017) in terrain with

large obstacles, and the larger spatial resolution may be useful for studying in-

teraction of the animal (body, appendages, sensors) with the terrain in detail

(Cowan, Lee, and Full, 2006; Dürr and Schilling, 2018; Okada and Toh, 2006).

There may also be opportunities to advance neuromechanics of large obstacle

traversal by combining the terrain treadmill with miniature wireless data back-

packs (Hammond et al., 2016) for studying muscle activation (Sponberg and

Full, 2008) and neural control (Mongeau et al., 2015; Watson, Ritzmann, and

Pollack, 2002). The treadmill design may be scaled down or up to suit animals

(or robots) of different sizes. Our treadmill enables large spatiotemporal scale

studies of how locomotor behavior emerges from neuromechanical interaction

with terrain with large obstacles.

Our study is only a first step and the terrain treadmill can use several im-

provements in the future to realize its potential. First, we will add more cameras

from different views to minimize occlusions and diffused lighting from different

directions to minimize shadows, as well as increase camera frame rate to accom-

modate rapid antenna and body movement, to achieve more reliable tracking of

the animal body and antenna through cluttered obstacles during which 3-D body
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rotations are frequent. Second, feedback control of the sphere can be improved

to use not only position but also velocity of the animal to better maintain it on

top. This will be particularly useful if the animal suddenly accelerates or decel-

erates when traversing obstacles. Furthermore, for longer duration experiments,

animal could be perturbed when at rest to elicit movement by automatically

moving the treadmill. Finally, we need to take into account how locomotion

on the spherical treadmill may affect the animal’s sensory cues as compared to

moving on stationary ground (Buchner et al., 1994; Stolze et al., 1997)
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Chapter 5

Conclusion

5.1 General remarks

In this dissertation, we reported the results of integrated biological, robotic,

and physics studies of beam obstacle traversal and ground self-righting. The

reported results supported the hypotheses of physical interaction-mediated lo-

comotor transitions that were proposed in Section 1.3.5.

5.1.1 Summary of contributions

The results reported in this dissertation demonstrated the following:

1. Locomotor transitions in beam traversal and self-righting were barrier-

crossing transitions on potential energy landscapes (Chapters 2 and 3).

2. Physical interaction during beam obstacle traversal and self-righting was

stochastic and led to strong attraction of system state trajectories to the

landscape basins (Chapters 2 and 3).

3. Physical interaction via some modes were easier (terradynamically favor-

able) in both beam traversal and self-righting (Chapters 2 and 3).
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4. In both beam traversal and self-righting, the system remained in a favor-

able mode, or transitioned to a more favorable mode when kinetic energy

fluctuation from oscillatory self-propulsion are comparable to the poten-

tial energy barrier to be overcome (Chapters 2 and 3). For example, when

traversing stiff beams (Chapter 2), animals and robots were more likely to

transition to roll mode, as pitch mode required pushing down stiff beams,

which was physically difficult. By contrast, animals and robots traversed

flimsy beams by pushing them down (pitch mode).

5. When kinetic energy fluctuation was not sufficient to overcome potential

energy barrier, changing system configuration lowered potential energy

barrier to the levels of available kinetic energy fluctuation, that then in-

duced transition (Chapter 3).

6. Tracking and reconstruction methods developed for an existing 3-D terrain

treadmill began to help quantify animal-environment physical and sensory

interaction at larger spatiotemporal scales (Chapter 4).

5.1.2 Stereotypyed locomotor transitions

Locomotor modes in both beam traversal (pitch and roll) and self-righting

(metastable and roll) are strongly attracted to energy basins on potential en-

ergy landscapes, leading to stereotypy in locomotor modes, transitions, and

system state trajectories on landscape. Stereotypy emerges directly from an-

imals’ and robots’ mechanical (and likely neural) systems directly interacting

with the physical environment under constraints. In traversal of stiff beams, the

animal and the robot are constrained to pitch-up into the gap due to the large
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restoring forces from beam deflection.Similarly in self-righting, the metastable

triangular base of support that emerges from wing opening constrains the robot

from pitching or rolling, but sufficient kinetic energy can induce body rolling.

Variations in movement in both model systems lead to stochastic transitions

resulting in beam traversal and self-righting and can be advantageous—in our

case, for traversal and self-righting—when locomotor behavior is separated into

distinct modes.

5.1.3 Kinetic energy: Fluctuation versus Pumping

Kinetic energy fluctuation is usually considered as adverse to the robot perfor-

mance. Our discovery of kinetic energy fluctuation-driven locomotor transitions

suggest that the kinetic energy fluctuation from oscillatory self-propulsion may

prove useful to a certain degree when moving in unpredictable natural environ-

ments with beam-like obstacles or self-righting; of course, too large a variation

or fluctuation may begin to affect robot control. For example, passive vibrations

have been shown to facilitate robotic parts alignment (Mohri and Saito, 1994;

Swanson, Burridge, and Koditschek, 1995).

We also note that kinetic energy fluctuation is only one possible way to

induce transitions. They may also be induced by control strategies that accu-

mulate or “pump” mechanical energy in the system, which can be converted

to kinetic energy to induce transitions. For example, previous studies of un-

deractuated robot arms have proposed control strategies in which mechanical

energy pumped into the system is appropriately exchanged between system ki-

netic and potential energies to reach the desired configuration (Spong, 1995;

Nakanishi, Fukuda, and Koditschek, 2000). Recently, another study in our lab
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(Xuan and Li, 2020a) demonstrated a similar energy accumulation strategy to

achieve self-righting.

5.2 Future directions

While the investigation in this dissertation have addressed a few of the knowl-

edge gaps, more questions have been raised than those answered. Here I briefly

mention some of the related directions that I find intriguing and are possible

extensions of the studies in this dissertation.

5.2.1 Neuromechanical interaction during locomotor
transitions

The studies in this dissertation (Othayoth and Li, 2021; Othayoth, Thoms, and

Li, 2020) focused on locomotor transitions in the feedforward regime of loco-

motion (Dickinson et al., 2000; Nishikawa et al., 2007), by eliciting transitions

during escape responses in which the role of sensory feedback is diminished due

to the inherent neuromechanical delays (Sponberg and Full, 2008). However,

an interesting observation from cockroach beam obstacle traversal was that the

animal can make barrier-crossing transitions even if kinetic energy fluctuation

was not sufficient to overcome potential energy barriers (Chapter 2, Figure 2.17)

(Othayoth, Thoms, and Li, 2020). This suggests that transitions may be facili-

tated by sensory feedback (see Section 5.2). Following this, a recent study from

our lab led by Yaqing Wang (Wang, Othayoth, and Li, 2021) demonstrated that

during beam traversal cockroaches actively adjust body and appendages which

facilitates locomotor transitions.
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In addition to these active adjustments, cockroaches may integrate informa-

tion from antennal sensing (Cowan, Lee, and Full, 2006; Mongeau et al., 2014;

Mongeau et al., 2015) and body and leg proprioception (Watson and Ritzmann,

1997; Tuthill and Azim, 2018; Tuthill and Wilson, 2016) during their locomo-

tion (Dickinson et al., 2000; Nishikawa et al., 2007; Holmes et al., 2006). An

interesting question that is yet to be answered is how various information from

neural and mechanical sensory modalities are integrated (Dickinson et al., 2000;

Mongeau et al., 2021; Roth et al., 2016) to elicit or avoid locomotor transitions.

5.2.2 Decision making in natural environments

In addition to animals’ internal states (Calhoun, Pillow, and Murthy, 2019)

(such as hunger and fear) and the perceived external cues (Kennedy et al.,

2014; McFarland, 1977) such as incoming predators and escaping prey, their

neuromechanical interaction with the environment (Dickinson et al., 2000) may

also influence decision-making in animals (McFarland, 1977). Depending on its

goals such as predation, migration, and evasion, an animal must vary its phys-

ical interaction with the environment to use the appropriate locomotor modes.

For example, during escape responses, transitioning to modes that require over-

coming higher potential energy barrier may be terradynamically unfavorable

but beneficial by reducing the risk of predation. By contrast, during free ex-

ploration of environment during foraging (Viswanathan et al., 2011), an animal

may choose to make transitions to access ecological patches with more resources

(Fryxell et al., 2008). Conversely, goals may be altered based on the outcome of

physical interaction. For example, loss of foothold triggers self-righting response

in cockroackes (Sherman, Novotny, and Camhi, 1977). Combining models that
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consider the effects of risk (Latty and Beekman, 2010) and rewards (Gillette et

al., 2000) perceived by animals with those of physical interaction (e.g., biome-

chanical templates and anchors (Full and Koditschek, 1999), potential energy

landscapes (Othayoth et al., 2021b)) may help better understand how decision

making emerges in natural environment. Recent data-driven and optimization-

based approaches have begun to represent internal states (Calhoun, Pillow, and

Murthy, 2019) and biomechanical risk (Hackett et al., 2020) and hold promise

towards understanding the principles of decision making in animals.

5.2.3 Detecting and leveraging terrain affordances

Animals moving in complex natural environments often use physical interaction

with terrain components to make locomotor transitions. However, physical

interaction in cluttered, obstacle-laden terrain have been traditionally deemed

as unfavorable or hostile for robots. As a result, obstacle avoidance (Khatib,

1986) has been the focus of various robot motion planning approaches (Latombe,

2012).

However, obstacles in terrain may be used to generate propulsion (Transeth

et al., 2008; Liljeback et al., 2011; Greer et al., 2018; Selvaggio et al., 2020; Qian

and Koditschek, 2020). Terrain elements present surfaces against which an ani-

mal or a robot can exert forces. Such contact with terrain components deemed

as obstacles are often different from those afforded by flat ground (Blickhan and

Full, 1993; Holmes et al., 2006) and may have additional advantages. Develop-

ment of tractable physics models predictive to predict the desired forces (Astley

et al., 2020; Holmes et al., 2006; Li, Zhang, and Goldman, 2013) combined with

intelligent terrain detection and planning algorithms (Bermudez et al., 2012;
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Wu et al., 2016) may enable robots to leverage the affordances provided by

their environment to make effective physical interaction and robust locomotor

transitions.
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5.3 Closing remarks

Working towards the projects explored in this dissertation have helped changed

my outlook on doing science and engineering, and to a certain extent, life. These

studies gave me an opportunity to acquaint myself with fascinating topics in

fields both related and unrelated to locomotion. More importantly, it gave me

an opportunity to meet and learn from amazing people of diverse backgrounds.

In hindsight, some plans never materialized; some were “not great, but not

terrible”; but I’d like to think that most of them worked out better than I

anticipated. Nevertheless, it has been a reasonably constructive endeavor for

me! I wrap up with a quote from the Twelfth Doctor:

“Things end. That’s all. Everything ends, and it’s always sad. But every-

thing begins again too, and that’s... always happy. Be happy.”
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