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Abstract
Randomness is common in biological and artificial systems, resulting either from stochasticity of
the environment or noise in organisms or devices themselves. In locomotor control, randomness is
typically considered a nuisance. For example, during dynamic walking, randomness in stochastic
terrain leads to metastable dynamics, which must be mitigated to stabilize the system around limit
cycles. Here, we studied whether randomness in motion is beneficial for strenuous locomotor tasks.
Our study used robotic simulation modeling of strenuous, leg-assisted, winged ground self-righting
observed in cockroaches, in which unusually large randomness in wing and leg motions is present.
We developed a simplified simulation robot capable of generating similar self-righting behavior
and varied the randomness level in wing–leg coordination. During each wing opening attempt, the
more randomness added to the time delay between wing opening and leg swinging, the more likely
it was for the naive robot (which did not know what coordination is best) to self-right within a
finite time. Wing–leg coordination, measured by the phase between wing and leg oscillations, had a
crucial impact on self-righting outcome. Without randomness, periodic wing and leg oscillations
often limited the system to visit a few bad phases, leading to failure to escape from the metastable
state. With randomness, the system explored phases thoroughly and had a better chance of
encountering good phases to self-right. Our study complements previous work by demonstrating
that randomness helps destabilize locomotor systems from being trapped in undesired metastable
states, a situation common in strenuous locomotion.

1. Introduction

Randomness is common in biological systems, result-
ing either from stochasticity of the environment
(Bovet and Benhamou 1988) or noise in organ-
isms themselves (for example, in sensing, informa-
tion processing, and movement) (Faisal et al 2008,
Van Beers et al 2002). Randomness is also common in
man-made dynamical systems, which can come from
sensors (How and Tillerson 2001), information trans-
fer (Nilsson et al 1998), motor control (Ho 1997),
mechanical properties (Marti 2003), and the envi-
ronment (Byl and Tedrake 2009). Typically, random-
ness degrades system performance and needs to be
mitigated. For example, stochasticity in the terrain
(surface slope variation) can drift the limit cycles
of a passive dynamic walker, breaking the dynamic
stability found in idealized, flat terrain and leading

to metastable (locally attractive) behaviors (Byl and
Tedrake 2009). Neuromuscular noise also decreases
walking stability (Roos and Dingwell 2010). Sen-
sory noise can overwhelm weak signals (Faisal et al
2008) and compromise motion planning (How and
Tillerson 2001, Osborne et al 2005). Inherent ran-
dom time delay in communication and computation
degrades the performance of control systems (Nilsson
et al 1998). All these problems can pose challenges to
locomotion.

Although typically considered as a nuisance,
randomness can be useful for both biological and
artificial locomotor systems. Over large spatiotempo-
ral scales, many animals move in stochastic trajecto-
ries (e.g., Lévy flight (Bénichou et al 2005, Reynolds
and Rhodes 2009), correlated random walk (Bergman
et al 2000)) which increases the efficiency of search-
ing for resources and mates (Reynolds and Rhodes
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Figure 1. Discoid cockroach’s strenuous, leg-assisted, winged ground self-righting. (a) Snapshots of a discoid cockroach
self-righting. In this trial, the animal succeeds after two attempts of wing opening. (b) Schematic of animal in metastable state.
Yellow arrows and triangle show head and two wings in contact with ground, forming a triangular base of support. Blue and red
arrows show wing and leg oscillations. Blue and red dashed lines show approximate axes of rotation of body during wing
oscillation and legs during flailing. Translucent red plane shows sagittal plane. (c) Left: periods of wing oscillation in a trial with
32 cycles. Right: periods of a hind leg’s oscillation in a trial with 51 cycles. Solid and dashed lines show mean ± s.d. (d) Violin
plots of wing and leg oscillation periods for three individuals (n = 3 trials for each; 679 leg cycles and 59 wing cycles in total).
Local width of graph shows the frequency of data along each value of y-axis. Inner rectangle shows mean ± s.d.

2009) and decreases the risk of encountering preda-
tors (Bergman et al 2000) or conspecifics that com-
pete for the same resources (Reynolds and Rhodes
2009). Over smaller spatiotemporal scales, stochastic-
ity in the velocity of prey animals increases the prob-
ability of avoiding ballistic interception by predators
(Moore et al 2017). In biological sensing, weak peri-
odical signals can be amplified via stochastic reso-
nance with noise (under a threshold) (McDonnell and
Ward 2011, Wiesenfeld and Moss 1995). Inspired by
these biological systems, randomness has been lever-
aged to improve the performance of artificial systems,
such as random search for optimization (Sutantyo
et al 2010), weak signal detection using stochastic
resonance (Kurita et al 2013) or resonant trapping
(Gammaitoni and Bulsara 2002).

Inspired by these ideas, here we studied whether
randomness in motion is beneficial for strenuous
locomotor tasks. Our study was motivated by recent
observation of the discoid cockroach (Blaberus
discoidalis) self-righting from an upside-down
orientation on a level, flat surface (figure 1(a),
supplementary video S1 (https://stacks.iop.org/BB/
15/065004/mmedia)) (Li et al 2019). One strategy of
the animal is to push both its wings together against
the ground in an attempt to pitch over its head
(figure 1(b), blue arrow) (Li et al 2019). However,
such a somersault has a large potential energy barrier,

which the animal can rarely generate sufficient kinetic
energy to overcome (Othayoth et al 2017). Thus, the
animal is often trapped in a metastable state (Hanggi
1986), where its center of mass (CoM) projection
falls within a triangular base of support formed by
the head and outer edges of two wings in contact with
the ground (figure 1(b), yellow arrows and triangle)
(Othayoth et al 2017). Meanwhile, the animal often
flails its legs laterally (figure 1(b), red arrow) and
flexes and twists its abdomen (Li et al 2019). These
motions induce kinetic energy fluctuation to perturb
the body to roll, which overcomes a smaller potential
energy barrier (Othayoth et al 2017). Thus, when the
animal does eventually self-right, often after multiple
wing opening attempts, it almost always rolls to one
side (Li et al 2019).

During each wing opening attempt, while
mechanical energy is injected by wing and leg
motions, it is dissipated via collision and friction
against the ground and internal collision (wings
and legs stop moving relative to the body). Thus,
coordination between wing and leg oscillations may
be critical for self-righting. Curiously, compared to
cockroach walking (Watson and Ritzmann 1997)
and running (Full and Tu 1990), in strenuous,
leg-assisted, winged self-righting, both wing and
leg oscillations are much less periodic, with large
randomness present in their amplitudes, directions,

2

https://stacks.iop.org/BB/15/065004/mmedia
https://stacks.iop.org/BB/15/065004/mmedia


Bioinspir. Biomim. 15 (2020) 065004 Q Xuan and C Li

Figure 2. Cockroach-inspired, leg-assisted, winged self-righting simulation robot. (a) Simulation robot with a head, two wings,
five motors, and a pendulum leg, in metastable state. Yellow arrows and triangle show head and two wings in contact with
ground, forming a triangular base of support. Red and blue arrows show wing and leg oscillations. Translucent red plane shows
sagittal plane. (b) Frontal and side views of simulation robot to define leg angle (red) as well as wing roll and wing pitch (blue).
(c) Actuation profiles of wings (blue) and leg (red). Δti is the time delay of the ith wing opening attempt, defined as the time
interval between wing opening moment and the start of the preceding leg oscillation. A Gaussian noise δt is added to Δt in
simulation experiments with randomness. (d) Hertzian contact model used in multi-body dynamics simulation. δn is virtual
overlap (deformation) between two rigid bodies. Fn and Ft are normal and tangential contact forces. R1 and R2 are local radii of
curvature at contact.

speeds, and periods. For example, the periods
of leg and wing oscillations are highly variable,
with a coefficient of variation (standard deviation
divided by mean) of Cv = 25% for leg and Cv =

36% for wing (figures 1(c) and (d)). In addition,
the animal appears to randomly flex and twist its
abdomen and scrape or hit its flailing legs against
the ground by chance (Li et al 2019). All these large
random motions are absent during walking and
running.

We hypothesize that the unusually large ran-
domness in motions is beneficial for strenuous, leg-
assisted, winged ground self-righting, by allowing
random search in appendage configuration space
to find an appropriate appendage coordination. We
chose to focus on leg-assisted, winged self-righting
among the diverse strategies observed in the cock-
roaches (Li et al 2019), because it is a strenuous behav-
ior where coordination between different appendages
is likely to be critical. As described above, this self-
righting behavior is complex, with the head, two
wings, multiple legs, and abdomen all playing a role
(Li et al 2019). Studying randomness in the coordi-
nation of all these body parts together poses a sig-
nificant challenge. As a first step, we focused on the
randomness in the coordination between wings and
legs.

To test our hypothesis, we took an approach
of robotic modeling and created a simplified com-
putational model—a cockroach-inspired simulation
robot—to perform systematic in silico experiments

(figure 2(b)). We chose to use a simulation robot here
because it allowed precise control of randomness and
large-scale, systematic parameter variation not prac-
tical in physical experiments. Our simulation robot
followed the design and control of a recent physi-
cal robot that we developed to understand the role
of kinetic energy fluctuation in leg-assisted, winged
self-righting (Othayoth et al 2017). The robot has two
wings, a pendulum ‘leg’, and a body with a head that
protrudes beyond the anterior end of the wings (mim-
icking the cockroach’s head). The two wings open and
close symmetrically, and the single leg swings side to
side to generate lateral perturbation. Although these
motions are much simplified relative to the animal’s,
they can generate body motions representative of
the animal’s strenuous self-righting behavior that we
are interested in (Othayoth et al 2017), while also
providing the simplest model system, with only two
degrees of freedom in actuation.

As a first step to understand the role of random-
ness in wing–leg coordination, we added Gaussian
noise of variable levels to wing oscillation period
(figure 2(c)). During each wing oscillation cycle,
between wing opening and closing, the wings are
held open or closed for some time (supplementary
video S1). We chose to only add noise to the time
that wings are held closed, so that other parameters
(wing opening/closing speed, wing opening ampli-
tudes, wing opening time) were kept constant. In
addition, we varied wing opening and leg flailing
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amplitudes (figure 6) to study the effect of random-
ness over a wide range of parameter space. Then, we
studied how randomness in the phase between wing
and leg oscillations affected self-righting outcome of
a single wing opening attempt, and we used this sin-
gle attempt phase map (figure 7) to predict the out-
come of multiple attempts (figure 8). These analyses
helped reveal how randomness in phase was beneficial
for self-righting.

We emphasize that we deliberately designed and
controlled our robot to serve as a physical model
to generate strenuous self-righting similar to the
animal’s, so that we could study appendage coordi-
nation. Our goal is not to simply achieve successful
self-righting, which can be done in many other, and
often simpler, ways in a robot (for a review, see (Li et al
2017)). For example, a previous cockroach-inspired
robot with wings and no legs (Li et al 2017) was capa-
ble of self-righting by a somersault using wings only.
It could also open the left and right wings asymmet-
rically to roll the body to self-right. In both cases,
the wings opened sufficiently to generate sufficient
rotational kinetic energy to overcome the potential
energy barrier. By contrast, the discoid cockroach’s
wing opening alone was rarely sufficient (Othayoth
et al 2017) and must be supplemented by the
perturbating motions of the legs and abdomen. In
addition, this previous robot did not have a protrud-
ing head that adds to the potential energy barrier and
makes self-righting strenuous. Thus, although this
previous robot self-rights easily, it is not suitable for
studying the behavior we are interested in here.

2. Methods

2.1. Design and actuation of simulation robot
Our simulation robot was created using Chrono,
an open-source, high-fidelity, multi-body dynamics
engine (Mazhar et al 2013, Tasora et al 2015). Besides
the head, two wings, single pendulum leg (consist-
ing of a lightweight rod and an added mass), the
robot also had five cuboidal motors (figure 2(a); see
mass distribution in table 1). The wings and head
were cut from a thin ellipsoidal shell. We carefully
matched the simulation robot’s geometry and mass
distribution. We created CAD models of these parts
in SolidWorks and assembled them using the rela-
tive position and orientation of each part measured
from the physical robot. We then exported the assem-
bled CAD model into Chrono to create the simulation
robot. We rounded the edges of each part to make the
contact forces change more smoothly in simulation
and considering that we used the Hertzian contact
model (see below) which is developed for rounded
shapes.

Each wing could both pitch and roll relative to the
body, actuated by two motors with orthogonal axes
of rotation (figure 2(a)). We defined wing pitch and
roll (figure 2(b)) as the angles rotated by the pitch

motors (3, 4) and roll motors (1, 2). Because the
cockroach’s two wings open and close together during
self-righting, we controlled the robot’s two wings to
move symmetrically. We also constrained wing pitch
and roll angles to always be the same to simplify exper-
iments and analysis. Thus, wings motion was effec-
tively one degree of freedom, which we described with
wing angle θw (figure 2(b)). The robot’s pendulum leg
was actuated by a separate motor (figure 2(a), motor
5). We defined leg angle θl as the angle between the
pendulum and body midline (figure 2(b)).

Our physical robot’s wing and leg oscillations
were controlled using simple actuation profiles, with
actuation parameters deliberately chosen to generate
strenuous leg-assisted, winged self-righting behavior
similar to the animal’s (Othayoth et al 2017). Thus,
we simply designed the simulation robot’s wing and
leg actuation profiles (figure 2(c)) to approximate
those of the physical robot and used similar actua-
tion parameters. For both the physical and simula-
tion robots, wing and leg oscillation periods were Tw

= 2 s and Tl = 0.8 s (except in phase-based predic-
tion where we varied Tw and Tl, see section 3.6). Tw

was chosen to be greater than Tl as observed in the
animal. Although there may be an optimal frequency
(close to the natural frequency in the body roll direc-
tion) for leg flailing to induce resonance, we did not
study it here because we focused on the randomness
in wing–leg coordination. For the simulation robot,
wing opening and closing speeds were 300◦ s−1 and
250◦ s−1, and the time for the leg to move from one
side to the other was tl = 0.15 s. Thus, the angular
speed of leg rotation was 2θl/tl. Note that these were
slightly different from the physical robot, whose val-
ues were 266 ± 19◦ s−1, 375 ± 14◦ s−1, and 0.143 ±
0.038 s. In particular, the slower wing closing speed
in simulation was chosen to better match the physical
robot. The physical robot’s thin wings and head were
deformable, and its 3-D printed plastic joints between
the body and wings had a slight give under load, both
of which quickly damped out body oscillation on the
ground after the wings closed. The simulation robot’s
thin wings and head were rigid, and slower wing clos-
ing reduced body oscillation and simulated this effect.
In physical/simulation robot experiments, we defined
the time interval between two consecutive instants
when the wings began to open as one wing opening
attempt.

2.2. Contact mechanics model
To solve for dynamics, we used the discrete-element
method via penalty (DEM-P) in Chrono, which mod-
els contact by a viscoelastic force model (Fleischmann
2015, Tasora et al 2015) (figure 2(d)):⎧⎨

⎩
Fn = f

(
R̄, δn

)
(knδn − γnm̄vn)

Ft = f (R̄, δn)(−ktδt − γtm̄vt)
(1)

where δ = δn + δt is the displacement vector of the
contact point between two bodies, which represents
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Table 1. Mass distribution of the simulation robot.

Component Mass (g)

Head 13.4
Leg rod 4.3
Leg added mass 51.5
Leg motor 28.6
Two wings 57.4
Two wing pitch motors 56.0
Two wing roll motors 48.8
Total 260

their overlap if no deformation occurs, and the sub-
scripts ‘n’ and ‘t’ represent normal and tangent com-
ponents, respectively. The scalars m̄ = m1m2/(m1 +

m2) and R̄ = R1R2/(R1 + R2) are the effective mass
and effective radius of curvature of the two interacting
bodies. The vector v = vn + vt is the relative velocity
between the two bodies. kn, kt, γn, γt are the normal
and tangential stiffness and damping coefficients, all
of which depend on m̄, R̄, and material properties
(Young’s modulus E, Poisson’s ration ν, and coeffi-
cient of restitution CoR) of the two bodies. Assuming
Coulomb friction (with coefficient μ), sliding hap-
pens if |Ft| > μ |Fn| and stops otherwise. During slid-
ing, kinetic friction is set to be |Ft| = μ |Fn|. Here we
chose Hertzian contact theory (Ding et al 2012, Popov
2010), i.e., in equation (1):

f
(
R̄, δn

)
=

√
R̄δn (2)

2.3. Material property characterization
To validate our simulation robot, we performed
experiments to characterize material properties
for the physical robot (Othayoth et al 2017).
This is important because the viscoelastic model
(equation (1)) includes Young’s modulus E, coef-
ficient of friction μ, coefficient of restitution CoR,
and Poisson’s ratio ν as parameters. In physical robot
experiments, before self-righting, only the wings and
head of the robot (made of polystyrene) contact the
ground (Othayoth et al 2017). Thus, we measured
or estimated the material property of polystyrene for
model input.

To measure coefficient of friction, we set the phys-
ical robot upside down on a rigid plate with the sand-
paper surface used in robot experiments (Othayoth
et al 2017). Then we slowly increased the slope angleα
until the robot started to slip. The critical angle αc was
used to calculate the coefficient of friction via μ= tan
αc. From this experiment (5 trials), μ = 1.00 ± 0.04
(mean ± s.d.). Thus, we used μ= 1 in simulation.

To measure Young’s modulus, we did exten-
sion experiments using an Instron universal testing
machine (34TM-10, Norwood, MA, US). We tested
three polystyrene beams with different thicknesses,
with each beam tested five times. We found that E =
0.78 ± 0.04 × 109 Pa for polystyrene (mean ± s.d.).
However, with such a high E, a simulation time step
of <10−7 s was required for numerical convergence,

leading to an impractical time to complete our sim-
ulation experiments (over one day to run 1 trial on
a 3.4 GHz 16-core workstation). A common practical
solution to this problem is to reduce Young’s modulus
in simulation so that numerical convergence can be
achieved with a larger time step (Maladen et al 2011,
Pazouki et al 2017, Tasora et al 2015). We found that,
with a sufficiently small simulation time step (10−5 s),
simulation results were not sensitive to E within
105 Pa to 107 Pa (e.g., the measured self-righting time
changed by less than 10%). Thus, we used a smaller
E = 1 × 105 Pa.

To obtain numerical convergence for this chosen
E while keeping simulation time practical, we varied
time step from 10−3 s to 10−7 s. We found that using a
larger time step of 10−4 s only resulted in a small error
from using a smaller time step of 10−6 s (e.g., pitch,
roll, and yaw angles of the robot changed less than
0.2◦ over 10 s of simulation). In addition, it reduced
simulation time to yield a practical time to complete
our simulation experiments (one day to run 1000 tri-
als on a 3.4 GHz 16-core workstation). Thus, we used
a time step of 10−4 s for all simulation experiments.
The numerical convergence was not sensitive to other
parameters (μ, ν, CoR), which only led to changes of
smaller than an order of magnitude in the choice of
time step.

In addition, we found that simulation results were
insensitive to Poisson’s ratio (e.g., pitch, roll, and yaw
angles of the robot changed less than 0.5◦ over 10 s
of simulation as ν varied from 0 to 0.5). Thus, we
chose ν = 0.35, close to that of polystyrene (Bangs
Laboratories 2015).

Because CoR was a function of the collision veloc-
ity, geometry, and material composition of both
objects in contact (Raḿırez et al 1999), it was diffi-
cult to measure experimentally. We found that CoR
had a small effect (e.g., self-righting time increased by
18.4% as CoR increased from 0 to 0.5). We chose CoR
= 0.1 to achieve large dissipation in simulation to bet-
ter match that the high damping of body oscillations
of the physical robot on the ground after wings closed,
as mentioned above.

2.4. Validation of simulation against physical
robot experiments
We performed simulation experiments to verify that
our simulation robot was reasonable in physics. In
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both physical and simulation robot experiments, we
varied wing opening and leg oscillation amplitudes,
θw and θl, and measured self-righting time. The phys-
ical robot had a naturally occurring randomness in
wing oscillation period of Cv = 1.3%. For the sim-
ulation robot, we added a randomness of Cv = 2.9%
to wing oscillation period. This was set to be larger
than that in the physical robot to account for other
randomness in the system, such as randomness in θw
and θl, leg actuation, and the environments. For both
the simulation and physical robots, we performed five
trials at each combination of θw and θl. We recorded
the first 10 s of each trial. The 10 s time limit was cho-
sen to save simulation time, considering that in most
trials, self-righting occurred within 10 s. If the robot
could not self-right within 10 s, we defined it to have
failed. For failed trials, we set self-righting time as 10 s.
This was considering that, if we did not consider failed
trials in averaging self-time, the few successful trials
were not representative.

2.5. Randomness in simulation robot motion
To introduce randomness in wing oscillation period
(and thus randomness in wing–leg coordination), we
added Gaussian noise with variance σ2 (using C++)
to the time when wings are held closed. To isolate the
effect of coordination, we chose to add randomness
rather than vary Tw and Tl directly, because doing so
would affect the mechanical energy injected by chang-
ing the speed and duration of motor actuation. To iso-
late the effect of randomness in actuation, we did not
introduce noise in the mechanical system (e.g., mor-
phology, physical property, the environment) that is
inevitable in the physical robot and animal (see dis-
cussion in section 4.2). For simulation experiments,
we measured the level of randomness using coeffi-
cient of variation, Cv , defined as the ratio between
standard deviation σ and leg period Tl. We chose to
normalize σ by Tl because phase ϕ, which we used to
measure wing–leg coordination, was normalized by
Tl. To study the effect of randomness, we varied Cv

(0%, 5%, 10%, 15%, 20%, and 25%) in simulation
experiments. For each combination of θw (70◦, 72◦,
74◦, 76◦) and θl (20◦, 30◦, 40◦, 50◦) and a given Cv ,
we performed 40 simulation trials. This resulted in a
total of 3840 trials.

2.6. Phase between wing and leg oscillations
Because we only added randomness to wing oscil-
lation period while keeping everything else constant
(section 2.5), the only thing that changed was the
phase between wing and leg oscillations at each wing
opening attempt (figure 2(c)). For each wing open-
ing attempt i, we defined the phase ϕ between wing
and leg oscillations as the ratio of time delay Δti to
leg period Tl. The initial phase was thus ϕ1 =Δt1/Tl.
To study the effect of phase for a single wing opening
attempt (section 3.5), we varied ϕ from 0% to 100%
with an increment of 5% for each combination of θw

Figure 3. Snapshots of simulation robot during
self-righting. Left: robot in metastable state, with two wings
fully open and forming a triangular base of support (yellow
arrows and triangle) with head on the ground. Right: robot
pivoting over edge of head and right wing, overcoming the
minimal potential energy barrier. Yellow dot is CoM. Black
curve is CoM trajectory. Δh is the height lifted
(exaggerated) and defines gravitational potential energy
barrier Ebarrier = mgΔh, where m is robot mass and g is
gravitational acceleration.

and θl tested, without adding randomness. To test the
predictive power of phase-based prediction method
(section 3.6), we varied ϕ from 0% to 100% with an
increment 5% for each combination of wing period
(2 s, 2.5 s, 3 s) and leg oscillation period (0.6 s, 0.8 s,
1 s, 1.2 s, 1.4 s) tested. We note that the animal’s phase
also varied from 0% to 100% (appendix A).

2.7. Potential energy barrier calculation
Self-righting requires overcoming a potential energy
barrier (Domokos and Várkonyi 2008). As a proxy to
quantify the difficulty of self-righting over the range
of θw and θl tested, we calculated how the minimal
potential energy barrier to self-right changed with θw
and θl. When the wings were fully open, the CoM
was at a local minimum on the potential energy land-
scape, which corresponded with the metastable state
with triangular base of support (yellow arrows and
triangle). If the robot pivots over an axis formed by
the edge of head and a wing to self-right (figure 3),
it overcomes a minimal potential energy barrier ΔE
= mgΔh. The simulation (and physical) robot did
not always do so when self-righting, as its head or
wing edge may lift off briefly during pivoting dur-
ing dynamic rotation, and the actual barrier overcome
may be slightly higher. However, the minimal barrier
still provided a measure of how challenging it was to
self-right.

To calculate the minimal barrier as a function of
θw and θl, we first calculated the gravitational poten-
tial energy landscape of the robot over body pitch
and roll space (Othayoth et al 2017), for the range of
θw and θl tested above. We imported the robot CAD
model in MATLAB and varied body pitch and roll
from−180◦ to 180◦ for each combination of θw and θl

to calculate its gravitational potential energy (we did
not vary body yaw because it did not affect gravita-
tional potential energy). Then, for each combination
of θw and θl, we searched for the minimal potential
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energy barrier using a Breadth-first search method.
Note that the potential energy landscape here is differ-
ent and an advancement over the simplistic landscape
in previous studies (Li et al 2017, Li et al 2019), which
only considered the body.

3. Results

3.1. Comparison between simulation and
physical robot experiments
Qualitatively, the simulation robot displayed similar
self-righting motion as the physical robot (figures 4(a)
and (b); supplementary video S2). In addition, the
dependence of self-righting time on θw and θl was
qualitatively similar between the two—it took both
a shorter time to self-right as θw and/or θl increased
(figure 4(c)). This qualitative similarity meant
that the simulation had the fundamental physics
correct.

However, for a given θw and θl, it was easier for the
physical robot to self-right than the simulation robot.
This quantitative discrepancy was not surprising and
likely due to several differences between the simula-
tion and physical robots. First, the physical robot’s
thin wings and head likely deformed and decreased
its potential energy barrier to self-right, compared
to the simulation robot’s rigid ones. In addition,
the physical robot’s left and right motors had small
differences in actuation profiles (due to manufactur-
ing variation). This lateral asymmetry may make it
easier to self-right (Li et al 2017). Furthermore, the
Hertzian contact model used in simulation was devel-
oped for simple, ideal object shapes such as sphere
and half-space (Popov 2010). Contact mechanics
modeling for objects with complex geometry is still an
open area of research (Popov 2010). Due to all these
model approximations, quantitative match between
the simulation and physical robots was difficult to
achieve even after large scale parameter variation in
simulation.

Our purpose is to study general principles of
wing–leg coordination in leg-assisted, winged self-
righting. Chrono Engine, as a matured physical
engine, has been validated by some studies (Rieser
et al 2019, Tasora et al 2015). Although there were
quantitative discrepancies, our simulation still pro-
vided a useful tool to study the principles of how
appendage coordination affected self-righting.

3.2. Multiple attempts to self-right from
metastable state
Similar to the animal (Li et al 2019) and physical
robot (Othayoth et al 2017), the simulation robot’s
self-righting often required multiple wing opening
attempts (figure 4(b); supplementary video S2). If
the simulation robot could not self-right upon the
first attempt, it kept opening and closing its wings
to make more attempts, until it either succeeded or
failed to self-right within 10 s. This was because, like

the animal and physical robot, the simulation robot
was also often stuck in a metastable state with a tri-
angular base of support, formed by the head and
outer edges of two wings in contact with the ground
(figure 2(a), yellow arrows and triangle). With suffi-
cient perturbation from the leg, the simulation robot
could escape from the metastable state, often after
multiple attempts. These observations verified that
our simulation robot displayed the strenuous leg-
assisted, winged self-righting behavior that we are
interested in.

3.3. Potential energy barrier
As wing opening amplitude θw increased, mini-
mal gravitational potential energy barrier decreased
(figure 5), because CoM height at the metastable state
increased. As leg oscillation amplitude θl increased,
minimal gravitational potential energy barrier also
decreased (figure 5), because the CoM moved closer
to the boundary of the triangular base of support (yel-
low triangle in figure 2(a)) when the leg rotated to one
side. Thus, we should expect it to become easier for
the robot to self-right as wing opening and leg oscil-
lation amplitude increased, with everything else being
equal.

3.4. Randomness in coordination increases
self-righting probability
Without randomness in wing–leg coordination, the
self-righting outcome of the robot was determin-
istic. The robot either always succeeded or always
failed to self-right for a given set of parameters
(figure 6, Cv = 0%). With randomness, self-righting
outcome became stochastic (figure 6, Cv > 0%). At
each Cv , self-righting probability increased with wing
opening and leg oscillation amplitudes (figure 6), as
expected from the decreasing potential energy bar-
rier (figure 5). Besides reducing the barrier, another
reason that increasing leg oscillation amplitudes facil-
itated self-righting was that it increased leg rotation
angular velocity and thus the kinetic energy that the
leg injected.

When θw and θl were too small or too large, self-
righting probability was nearly always zero or one, not
strongly affected by randomness (figure 6). However,
at intermediate θw and θl near the boundary between
success and failure without randomness (Cv = 0%),
increasing level of randomness in wing–leg coordi-
nation significantly increased the robot’s self-righting
probability (figure 6, Cv = 0%–25%). For θw and
θl slightly above the boundary, probability decreased
slightly, but this was outweighed by the substantial
increase in probability for θw and θl slightly below the
boundary.

These results suggested that, when a cockroach
is too tired (weak wing pushing and/or leg flail-
ing), randomness does not help; when it is very
energetic (strong wing pushing and/or leg flailing),
randomness does not matter. However, when an
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Figure 4. Validation of simulation robot against a physical robot. (a) and (b) Representative snapshots of physical (a) and
simulation (b) robot experiments. (c) Self-righting time as a function of wing opening and leg oscillation amplitudes θw and θl,
comparing between physical and simulation robots. Error bar are ±s.d. n = 5 trials at each combination of θw and θl for each
robot.

Figure 5. Minimal gravitational potential energy barrier as
a function of wing and leg angles, which is the minimal
energy barrier to escape the local potential energy
minimum (section 2.7).

animal is nearly or barely able to self-right (intermedi-
ate wing pushing and leg flailing), which is frequent in
strenuous self-righting, randomness in coordination
significantly increases its chance of success. In addi-
tion, when randomness was sufficiently large, further
increasing randomness did not significantly increase
self-righting probability (figure 6, Cv � 15%).

We note that the initial phase ϕ1 shown in this
example happened to be a bad phase (ϕ1 = 70%,

figure 6; see definition in section 3.5). However, if ϕ1

happens to be a good phase, adding randomness may
lead to requiring more attempts to self-right and thus
decrease self-righting probability within a finite time.

3.5. Randomness in coordination changes phase
between wing and leg oscillations
The phase between wing and leg oscillations had a
strong impact on self-righting outcome at intermedi-
ate wing opening and leg oscillation amplitudes. This
could be clearly seen from our results of self-righting
outcome after a single attempt without randomness
in coordination (figure 7, hereafter referred to as the
single-attempt phase map). When θw and θl were suf-
ficiently large (e.g., θw = 76◦, θl = 50◦), the simula-
tion robot self-righted at nearly all ϕ. When θw and
θl were sufficiently small (e.g., θw = 72◦, θl = 20◦),
the robot never self-righted at any ϕ. When θw and
θl were intermediate (e.g., θw = 76◦, θl = 20◦), phase
became important. Empirically, some ‘good’ phases
led to success (e.g., phases around ϕ= 0%, 50%, and
100%), whereas other ‘bad’ phases led to failure (e.g.,
phases around ϕ= 25% and 80%).

The change of self-righting outcome from success
to failure at higher wing opening or leg oscillation
amplitudes (e.g., lower probability at θl = 50◦ than at
θl = 40◦ for θw = 70◦, ϕ = 40%) was likely because,
besides changing the potential energy barrier, changes
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Figure 6. Effect of randomness in phase on self-righting probability within 10 s for each trial. Self-righting probability as a
function of wing opening and leg oscillation amplitudes from simulation experiments, comparing across different levels of
randomness Cv in wing–leg coordination. Data shown are for initial phase ϕ1 = 70%. n = 40 trials at each combination of θw

and θl .

Figure 7. Dependence of self-righting outcome of a single attempt on phase (single-attempt phase map), without randomness in
motion. Self-righting outcome as a function of ϕ and θl, comparing across θw.

in wing opening and leg oscillation amplitudes also
affected the energy injected and dissipated.

3.6. Single attempt phase map predicts
consecutive attempts outcome
After each failed attempt, the simulation robot oscil-
lated little on the ground, because most of its kinetic
energy was quickly dissipated (this was similar to
the physical robot, see section 3.1). Thus, consecu-
tive attempts should be nearly independent of each
other. Thus, we expected that the dependence of self-
righting outcome on phase (phase map) was the same
for every attempt. Then, we could use the phase map
of a single attempt (figure 7) to predict the self-
righting outcome after multiple consecutive attempts,
by evaluating how phase evolved over attempts. If
there is a strong history dependence between con-
secutive attempts, we cannot use the single-attempt
phase map to make prediction, but we expect that ran-
domness in coordination would still help because it
extends the coordination space.

To test how well this worked, we predicted the
number of attempts to achieve successful self-righting
for various initialϕ1 and wing period Tw without ran-
domness (figure 8(a), right). Given initial ϕ1, wing
period Tw , and leg period Tl, we calculated how ϕ

evolved for subsequent attempts (section 3.7). We

predicted that the attempt whose phase first reached
the good phases in the single attempt phase map
(section 3.5) would be successful. Hereafter, we refer
to this as the phase-based prediction method. The
prediction of this method (figure 8(a), right) matched
well with simulation results (figure 8(a), left) over
the Tw and ϕ1 space. For a broader range of Tw and
Tl (figure 8(b)), the phase-based prediction method
achieved a high accuracy of 91 ± 6% (mean ± s.d.) in
predicting the self-righting outcome observed in sim-
ulation experiments. We also used the phase-based
method to predict self-righting probability with dif-
ferent levels of randomness Cv (figure 6(c)), which
well matched the results from simulation experiments
(figure 8(c)).

3.7. Randomness allows stochastic visits of good
phases
Because the phase of each attempt was a good predic-
tor of its outcome, we examined how phase evolved
over consecutive attempts to understand how ran-
domness affected self-righting performance. Without
randomness, wing and leg actuation were periodic.
This resulted in a limited number of phases that could
be visited during consecutive attempts. If the phases
that could be visited happened to be bad for the wing
and leg oscillation periods given, self-righting was
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Figure 8. Using phase map from a single attempt to predict self-righting outcome after multiple attempts. (a) Prediction without
randomness: number of attempts required to self-right as a function of ϕ1 and Tw, comparing between phase map prediction and
simulation experiments. Failure to self-right is shown as number of attempts = 0. Data shown for Tl = 0.6 s, θw = 75◦, θl = 30◦.
(b) Prediction without randomness: prediction accuracy as a function of Tl and Tw. Prediction accuracy is percentage of phases at
which phase-based prediction matches simulation experiments. Data shown for θw = 75◦, θl = 30◦. (c) Prediction with
randomness: self-righting probability as a function of θw and θl predicted by phased-based method, comparing across
randomness Cv of coordination. n = 40 trials at each combination of θw and θl .

Figure 9. Phase evolution without and with randomness. Phase evolution over consecutive attempts (yellow points connected by
arrows) on phase map (white: good phases, black: bad phases), without randomness (a) and (c) and with randomness (b) and
(d). Phase map is from a single attempt in simulation experiments, assuming that it does not change over attempts. Green box
shows initial phase at the first attempt. Red circle shows the first good phase reached with randomness. Data shown for θw = 75◦,
θl = 30◦, Tw = 2 s, Tl = 0.8 s.

never successful. For example, for wing period Tw =

2 s and leg period Tl = 0.8 s, the least common mul-

tiple of both periods was LCM(2, 0.8) = 4 s. Thus,

the robot could only visit n = LCM(2, 0.8)/2 = 2 dif-
ferent phases (e.g., figures 9(a) and (c) with an initial

phase of ϕ = 30%, followed by ϕ = 80%, and so on

and so forth). Both these two phases happened to be

bad, and the robot was trapped in bad phases forever

(supplementary video S3).

With randomness added to the motion, the phase
evolution was no longer periodic (figures 9(b) and

(d)). Instead, the system could visit an infinite
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number of phases (any value from 0% to 100%) and
was thus impossible to be trapped in bad phases, as
long as there were good phases in the phase map (sup-
plementary video S3). For the example case, as soon
as it visited a good phase (the 6th attempt, figures 9(b)
and (d)), the robot self-righted. This is true for all tri-
als because the Gaussian noise that we added has a
non-zero probability to reach any value.

4. Discussion

In summary, we studied the impact of randomness
in coordination between appendages during strenu-
ous, leg-assisted, winged self-righting. We developed
a simulation robot following the design and control
of a recent physical robot to generate the strenu-
ous self-righting behavior, and we used it to conduct
systematic simulation experiments and analyses. We
discovered that randomness in wing–leg coordina-
tion facilitated self-righting, especially at intermediate
wing opening and leg oscillation amplitudes, when
the system’s kinetic energy was about to overcome
the potential energy barrier. Randomness allowed the
system to explore various phases more thoroughly
between wing and leg oscillations, thereby increasing
the chance of finding a good coordination between
them.

Although we did not systematically vary wing
opening and leg oscillation periods, our phase-
based prediction test results for different periods
(figures 8(a) and (b)) indicated that randomness
should facilitate self-righting by finding a good coor-
dination even for different periods. Admittedly, the
number of different phases accessible without ran-
domness, n = LCM(Tw , Tl)/Tw , can be made larger
by choosing Tw and Tl, which increases the chance of
finding a good coordination. However, without ran-
domness, the system still searches for a good phase
over the phase space with a constant increment every
attempt, which is a grid search over the phase space
that covers only a finite number of phases. By contrast,
adding randomness to the system results in a random
search that is more thorough (can cover any phase)
and efficient than a grid search (Bergstra and Bengio
2012, Lerman 1980).

Our work focused on the effect of randomness in
its simplest form, in the phase between a pair of oscil-
lating wings and a single leg, and only gave a glimpse
into a very complex noisy system. Additional ran-
domness may exist in the amplitudes, directions, and
speed of the motions of multiple wings and legs, in the
motions of other body parts such as the abdomen, as
well as in the mechanical system itself (e.g., morphol-
ogy, physical property, the environment), which may
also be beneficial (see discussion in section 4.2).

4.1. Implications for biological locomotion
Our results suggested that the large randomness
in coordination during self-righting (as opposed to

more periodic motion during walking and running)
in the discoid cockroach and other species may be
an adaptation to strenuous maneuvers. We specu-
late that animals may respond by moving their body
and appendages more randomly when they encounter
strenuous, emergency situations, such as being unable
to self-right after multiple attempts, or becoming
trapped by obstacles when moving in complex ter-
rain (Gart and Li 2018, Gart et al 2018, Li et al 2015,
Othayoth et al 2020).

Our study revealed the usefulness of random-
ness in biological and artificial system at the inter-
mediate scale (body and appendage motion within
a movement cycle), adding to previous knowledge at
larger scales (e.g., trajectory over many body lengths
and movement cycles) (Bénichou et al 2005, Hoff-
mann 1983, Reynolds and Rhodes 2009) and smaller
scales (e.g., sensory systems) (Gammaitoni and Bul-
sara 2002, McDonnell and Ward 2011, Wiesenfeld and
Moss 1995).

Our work complemented previous work on mit-
igating the negative impact of randomness to stabi-
lize locomotion around limit cycles (Byl and Tedrake
2009). In dynamic walking, randomness in terrain
surface slope breaks the dynamic stability, which must
be mitigated to maintain metastable locomotion (Byl
and Tedrake 2009). However, as we demonstrated,
randomness in motion can also help escape being
trapped in an undesired metastable state. This is espe-
cially useful if the locomotor task is strenuous. This
insight may have broader implications. For example,
when moving through complex terrain with large
obstacles, animals and robots must often dynamically
transition across distinct locomotor modes (Li et al
2015, Othayoth et al 2020). Our group’s recent work
demonstrated that, in different modes, their states are
strongly attracted to different basins of an underly-
ing potential energy landscape (Gart and Li 2018, Han
et al 2017, Othayoth et al 2020). Our study suggested
that body and appendage coordination is crucial
for quickly escaping from these attractive landscape
basins and having large randomness in coordination
is beneficial.

4.2. Implications for robotics
Our simulation robot differed from the physical robot
in that it did not have noise in the mechanical sys-
tem which is inevitable in the physical robot. With-
out random time delay in actuation, the result of
simulation experiments is deterministic, whereas the
result of the physical robot experiments is stochastic.
Despite this difference, we expect that our conclusion
also applies to physical robots, because randomness
should help explore the coordination space and find a
good coordination regardless. In fact, we expect hav-
ing randomness in coordination to be even more use-
ful for real, stochastic physical robots because, unlike
the deterministic simulation for which good phases
can be identified in advance, good coordination is
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unknown in a stochastic system and must be searched
every time.

We speculate that randomness in coordination
could also improve the performance of robots in other
strenuous locomotor tasks. When robots are trapped
in undesirable metastable states, such as in complex
terrain (Gart and Li 2018, Gart et al 2018, Li et al
2015, Othayoth et al 2020), their normal gait (walk-
ing, running, etc) may no longer work. Having or elic-
iting randomness in motions between body parts may
help find a good coordination to escape from such
unexpected emergencies.

Besides informing robot control, our discovery
of the usefulness of randomness may also be useful
for the mechanical design of self-righting robots. For
example, one can use flexible and/or under-actuated
appendages (e.g., using soft material and springs,
or a hollow appendage with a heavy ball inside)
to add stochasticity to the passive mechanics and
dynamics.

4.3. Future work
Our study only discovered the usefulness of random-
ness but did not uncover the physical mechanism.
Because successful dynamic self-righting requires
sufficient mechanical energy to overcome potential
energy barriers, wing and leg coordination influences
self-righting probability presumably by changing the
mechanical energy injected into system during each
attempt. We are developing a simple template (anal-
ogous to (Libby et al 2012, Patel and Braae 2014,
Saranli et al 2004)) to model the hybrid dynamics of
leg-assisted, winged self-righting to understand the
physical mechanism (Xuan and Li 2020). In addi-
tion, it would be interesting to test a suggestion
from our study—that energetic animals should have
less randomness in motion whereas fatigues animals
should have more. Finally, it would be intriguing (but
perhaps difficult (Heams 2014)) to tease apart how
much the randomness in animal self-righting (and
other forms of strenuous locomotion) is uncontrolled
and unintentional, and how much may be deliber-
ate, controlled randomness as a form of behavioral
adaptation.
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Appendix A

A.1. Measuring randomness level in animal
wing/leg oscillation periods
As a measure of the level of randomness of the dis-
coid cockroach’s wing and leg motions, we chose to
measure the coefficients of variation of the oscilla-
tion periods of the wings (both wings open and close
simultaneously) and each hind leg. We analyzed the
videos of three discoid cockroaches self-righting from
(Li et al 2019), with three trials for each individ-
ual. For each trial, we recorded the periods of all the
oscillation cycles of both wings and each hind leg
(figure 1(c)). We then separately pooled wing and leg
oscillation period data from the three trials and calcu-
lated their respective mean and standard deviation for
each individual (figure 1(d)) to obtain its coefficient
of variations.

For wing oscillation, a cycle was defined as the
interval between consecutive instants when the wings
began to open and body began to pitch up. For leg
oscillation, a cycle was defined to start when the
tip of a hind leg reached the farthest position from
the sagittal plane. We chose the hind legs because
they are the longest and heaviest among the six legs
(Kram et al 1997) and contribute the most flail-
ing kinetic energy (estimated to be 60% assuming
similar angular velocities). Occasionally, the animal
stopped moving its wings or legs for a while and then
resumed moving. This pausing behavior had a dis-
proportionately large effect on the variance of the
periods. Thus, we excluded outliers of wing and leg
oscillation periods that fall outside the interquartile
range.
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A.2. Distribution of phase in animal motion
Using animal data shown in figure 1(d), we further
calculated the animal’s time delay (see definition in
section 2.1) and phase (see definition in section 2.6)
between wing and hind leg oscillation in each attempt.
The range of phase in three individuals is from 0%
to 100% (figure A1). This provided evidence that the
animal’s variations in wing opening and leg oscilla-
tion periods were sufficiently large for it to access a
wide range of phases.
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