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Abstract
Robots can traverse sparse obstacles by sensing environmental geometry and avoiding contact with
obstacles. However, for search and rescue in rubble, environmental monitoring through dense
vegetation, and planetary exploration over Martian and lunar rocks, robots must traverse cluttered
obstacles as large as themselves by physically interacting with them. Previous work discovered that
the forest floor-dwelling discoid cockroach and a sensor-less minimalistic robot can traverse
cluttered grass-like beam obstacles of various stiffness by transitioning across different locomotor
modes. Yet the animal was better at traversal than the sensor-less robot, likely by sensing forces
during obstacle interaction to control its locomotor transitions. Inspired by this, here we
demonstrated in simulation that environmental force sensing helps robots traverse cluttered large
obstacles. First, we developed a multi-body dynamics simulation and a physics model of the
minimalistic robot interacting with beams to estimate beam stiffness from the sensed contact
forces. Then, we developed a force feedback strategy for the robot to use the sensed beam stiffness
to choose the locomotor mode with a lower mechanical energy cost. With feedforward pushing,
the robot was stuck in front of stiff beams if it has a limited force capacity; without force limit, it
traversed but suffered a high energy cost. Using obstacle avoidance, the robot traversed beams by
avoiding beam contact regardless of beam stiffness, resulting in a high energy cost for flimsy beams.
With force feedback, the robot determined beam stiffness, then traversed flimsy beams by pushing
them over and stiff beams by rolling through the gap between them with a low energy cost.
Stiffness estimation based on force sensing was accurate across varied body oscillation amplitude
and frequency and position sensing uncertainty. Mechanical energy cost of traversal increased with
sensorimotor delay. Future work should demonstrate cluttered large obstacle traversal using force
feedback in a physical robot.

1. Introduction

Mobile robots are becoming increasingly prevalent
in society. Many robots already excel at navigat-
ing on flat surface and avoiding sparse obstacles by
sensing environmental geometry, like robot vacuum
cleaners [1] and self-driving vehicles [2]. Sensors
like cameras, radars, and LiDAR are used to cre-
ate a geometric map of the surroundings, then a
collision-free path is planned to avoid physical con-
tact with obstacles [3–7]. However, for search and res-
cue through earthquake rubble [8, 9], environmental

monitoring through dense vegetation [10], and extra-
terrestrial exploration through Martian and lunar
rocks [11], robots often need to traverse complex 3D
terrain with densely cluttered obstacles as large as
themselves by physically interact with the obstacles.
In these situations, geometry-sensing based obstacle
avoidance faces difficulties. Firstly, a collision-free
path might not always be available. Secondly, even if
such a path exists, it could be energetically costly or
need an extended execution time, as the robot may
need to take long detours to circumvent obstacles.
Additionally, if the robot fails to avoid obstacles
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promptly, unexpected collisions and contact could
cause it to flip over [12, 13].

Understanding how to utilize and control phys-
ical interactionwith the environment (environmental
affordance [14, 15]) is fundamental to locomotion.
For example, understanding of terramechanics [16,
17] has helped wheeled vehicles off-road deform-
able ground. Understanding leg-ground interaction
on rigid ground [18–20] has provided the founda-
tion for legged robots to walk and run on flat surfaces
with small unevenness. Recent research into leg inter-
action with granular media has facilitated the robotic
design and control to improve legged and even
(surprisingly) wheeled locomotion on deformable
ground [21–26].

Biological organisms provide rich sources of
inspiration for understanding and controlling the
physical interaction of robots with obstacles to
improve their traversal in complex 3D terrains with
cluttered large obstacles. An excellent model organ-
ism is the forest floor-dwelling discoid cockroach
recognized for its exceptional ability to traverse veget-
ation, foliage, and rocky crevices [27, 28]. Recent
studies have shed considerable light on how these
creatures use effective body and leg interaction with
obstacles to traverse cluttered large obstacles via
integration of biological experimentation [27, 29, 30],
robophysical modeling [29, 31–35], and theoretical
and computational modeling [36].

Prior research discovered that the discoid cock-
roach can traverse grass-like beamobstacles using and
transitioning across different modes of locomotion
[27]. For example, the animal simply pitches up
the body to push over flimsy beams (figure 1(A),
blue), whereas it often transitions (figure 1(A), yel-
low) to rolling (figure 1(A), red) into a gap to man-
euver through stiff beams [35]. Its legs continuously
pushed against the ground, inducing oscillatory self-
propulsion during traversal [35].

To study the principles of locomotor mode
transitions, a sensor-less, feedforward, minimalistic
robophysical model was developed (figure 1(B)) [35].
The robot, featuring an ellipsoid-like body without
legs, was propelled forward at a consistent speed.
Its body oscillated to emulate the oscillatory self-
propulsion of the animal. This robot was free to pitch
and roll in response to interaction with two beams.
The grass-like beams weremodeled as two plates with
torsion springs at their base on the ground. Utilizing
this robot, researchers discovered the mechanism of
locomotor mode transitions under passive interac-
tion with obstacles [35]. A potential energy landscape
model showed that the pitch and roll modes arose
as the system was attracted to distinct pitch and roll
basins on a potential energy landscape, respectively
[35]. Systematic experiments using this robot demon-
strated that locomotor transition from pitch to roll
mode occurred when kinetic energy fluctuation from

body oscillations exceeded the potential energy bar-
rier between the pitch and roll basins [35].

However, although both the animal and robot
can traverse cluttered grass-like beam obstacles of a
range of stiffness, the animal was still better at travers-
ing. The animal often made the transition even when
the kinetic energy fluctuation from body oscillations
alone was insufficient for overcoming the potential
energy barrier [35], possibly by utilizing force sens-
ing during environmental interaction to actively con-
trol its locomotor mode transitions. This was partly
substantiated by a subsequent study which found that
the animal actively adjusted their body and append-
ages (e.g. head, abdomen, and legs) when transition-
ing from the pitch to the roll mode [30].

Here, we further studied how force sensing dur-
ing body-obstacle interaction could help active loco-
motor mode transitions. We chose to use the min-
imalistic, legless robot design because it provides an
ideal, simplified system to focus on sensing and con-
trolling body-obstacle interaction, which is import-
ant to locomotor transitions through cluttered large
obstacles [35]. The potential energy landscape model
in the previous study did not fully model the dynam-
ics of the system [35], limiting our ability to explore
the impact of force sensing. To address this, we
developed a multi-body dynamics simulation of the
minimalistic robot with force sensing and feedback
(section 2.1).While environmental force sensing cap-
abilities have been developed for some bio-inspired
legged robots [37–42], they only detect contact force
between the robot feet and the ground. Creating a
refined robot capable of sensing body-obstacle con-
tact forces and torques requires integrating distrib-
uted force sensors that cover the body surface and
developing feedback control algorithms to control
body rotations. This is a major undertaking and is
beyond the scope of this study.

We developed a force feedback strategy to use the
robot’s body force sensing to estimate the physical
properties of the beams and alter the traversalmethod
for different beams. In addition, we developed a phys-
ics model of the system that integrated a contact force
model and the corresponding equations of motion
(section 2.2). The physics model allowed us to estim-
ate the beam stiffness from the contact forces. We
performed simulation studies to compare strategies
with and without force sensing (section 2.3). Our
force feedback strategy first estimated beam stiffness
based on force sensing and a contact force model
(section 2.4). We then used the potential energy land-
scape model to classify beams as either stiff or flimsy
to guide the robot to choose a locomotor mode with
a lower energy cost (section 2.5). Using this inform-
ation, we performed motion planning to generate
robot trajectory (section 2.6). Our simulation also
allowed us to vary body oscillations and random-
ness during traversal to examine their influence on
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Figure 1. Discoid cockroach and robophysical model traverse grass-like beam obstacles using physical interaction. (A) For flimsy
beams, the discoid cockroach predominantly uses a pitch mode (blue), while for stiff beams, it predominantly transitions (yellow)
to a roll mode (red) [35]. (B) A minimalistic robophysical model of cockroach beam traversal [35]. Adapted with permission
from [35].

our strategy. Oscillation is a naturally occurring phe-
nomenon during traversal. The discoid cockroach
displays substantial body oscillations while travers-
ing due to their legs periodically pushing against the
ground [35]. Oscillations lead to intermittent con-
tact instead of steady contact, which can make pos-
ition sensing less accurate and presents increased
challenges in modeling contact forces and estimating
stiffness.

To evaluate the usefulness of the force feedback
strategy, we conducted a series of simulation studies.
First, we analyzed simulations of a robot traversing
both stiff and flimsy beams without force sensing and
studied its three different strategies (section 3.1). We
studied feedforward pushing strategy (section 3.1.1)
and obstacle avoidance strategy (section 3.1.3) to
provide a baseline. Considering that in real-world
scenarios both animals and robots have finite force/t-
orque capacities, we next studied feedforward push-
ing strategy with force/torque limits (section 3.1.2).
Second, we tested the robustness of the force feed-
back strategy against body oscillations with random-
ness and inaccuracies in position sensing (section 3.2)
to compare with the baseline. Third, to access the
advantages of the force sensing and active feed-
back control, we conducted simulations with the
force feedback control strategy and compared res-
ults with those from previous non-force sensing
strategies (section 3.3). Furthermore, as the sen-
sorimotor delay is inevitable in both animals and
robots, we used our simulation to study the influ-
ence of sensorimotor delay on traversal performance
(section 3.4). Finally, we discussed the limitations of
ourmethod, its broader applications, and futurework
(section 4).

2. Methods

In this section, we first describe how we developed
a physics-based simulation of a minimalistic robot

interacting with beams, incorporating body force
sensing (section 2.1). Then, we define the phys-
ics model that integrated a contact force model
along with the corresponding equations of motion
(section 2.2). Next, we describe how the force feed-
back strategy used force sensing and potential energy
landscape to guide the robot to select a loco-
motor mode that minimized energy consumption
(sections 2.4, 2.5 and 2.6). We formulated the energy
cost during traversal and conducted simulations to
compare strategies with and without force sensing
(sections 2.3, 2.7 and 2.8). Lastly, we experimented
with varying the sensorimotor delay in force feedback
control (section 2.9).

2.1. Simulation of robot traversing beams with
body force sensing
We developed a physics-based simulation as a plat-
form to explore the benefits of sensing contact forces
between the robot body and obstacles and using
this information to enhance its ability to traverse
beams. The simulation robot (figure 2(A)) was built
in Chrono, an open-source multi-body dynamics
engine [43, 44], following the design in previous study
[35]. It wasmodeled as a rigid ellipsoidal body similar
to the discoid cockroach’s body, with principal axes
lengths 2a = 0.22 m, 2b = 0.16 m, and 2 c = 0.06 m.
An additional weight of 0.5 kg made it bottom-heavy,
with the center of mass at hc = 0.01 m below the
geometric center (figure 3(A)). The ellipsoidal body’s
total mass M = 1 kg and its moments of inertia
along the three principal axes were (Ix, Iy, Iz) = (3.9,
7.5, 10.9) × 10−3 kg m2. The geometric center was
Ho = 0.105 m from the ground before moving.

The ellipsoidal body had three degrees of freedom
in translation and two degrees of freedom in rota-
tion (figure 2(A)). Although the robot was equipped
with three linear actuators for 3D translation, it was
primarily propelled forward by a linear actuator along
theX-axis. The lateral and vertical actuators only gen-
erated oscillations that allow for slight movements
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Figure 2.Multi-body dynamic simulation of minimalistic robot traversing beam obstacles. (A) The simulation robot body has
five degrees of freedom, fore-aft, vertical, lateral, roll (red arrow), and pitch (blue arrow), which are controlled by motors. The roll
axis (red dashed line) is an axis through the rotation center of the robot and parallel to the X-axis of the world frame. The pitch
axis (blue dashed line) is the y-axis in the body frame. An additional weight makes it bottom-heavy. Each beam is connected to
the ground via a torsion spring and can deflect in the vertical X−Z plane. The world frame is X–Y–Z. Body frame is x–y–z, which
is attached to the robot. (B), (C) Snapshots of simulation and physical robot experiments from our previous study [35]. (B)
Without vertical oscillations, both simulation and physical robots are stuck in the pitch mode. (C) With sufficient vertical
oscillations, both roll into the beam gap and traverse using the roll mode.

(∼2mm) along theY- andZ-axes. In accordancewith
the previous design [35], two rotation axes, which
were the roll axis (figure 2, red dashed line) and the
pitch axis (figure 2, blue dashed line). Two motors
controlled the ellipsoidal body’s rotation to emulate
the animal’s active pitch and roll adjustments. The
center of the rotation overlapped with the geometric
center. Thus, body orientation can be represented by
roll angle α and pitch angle β. The body was in static
equilibriumwhen both its roll angleα and pitch angle
β were 0◦.

Following previous work [35], the grass-like
beams were designed as rigid, vertical plates with
torsion springs at their base, and they could deflect
about Y-axis. The torque function of the spring was
τs = kθ− cdω, where k was stiffness, θ was the relat-
ive beam deflection angle, cd was the damping coef-
ficient (cd = 0.01 Nms/rad), and ω was the beam’s
deflection angular velocity. Note that here we added
an additional damping term to represent the energy
dissipation occurring during the beam’s motion. The
mass of each beam was m = 1 g. The two torsion
springs were symmetric about the X–Z plane. The
two beams were vertical when there was no deflec-
tion. The gap width between the two beams was
d = 0.138 m, which was narrower than the robot
body width. Each beam’s height, width, and thick-
ness were L = 0.155 m, w = 0.04 m, and h = 0.01 m
(figure 3(B)).

We used the discrete-element method with pen-
alty in the Chrono framework, which characterizes

contact through a viscoelastic force model
[44, 45] {

Fn = f(R̄, δn)(knδn− γnm̄vn)
Ft = f(R̄, δn)(−ktδt− γtm̄vt)

. (1)

Here, the vector sum of δn (normal) and δt (tan-
gential) was the displacement vector at the contact
point between two bodies, which symbolizes their
overlap in the absence of deformation. The effect-
ive mass m̄ and the effective radius of curvature R̄
are defined as m̄= m1m2

m1+m2
and R̄= R1R2

R1+R2
. kn,kt,γn,γt

are the normal and tangential stiffness and damp-
ing parameters, respectively. They are all dependent
on m̄, R̄, and the material properties of the interact-
ing bodies, including Young’s modulus (E), Poisson’s
ratio (ν), and the coefficient of restitution (CoR).
In our particular design, contact occurred exclus-
ively between the robot’s body and the beams. We set
their Young’s modulus= 106 Pa, Poison’s ratio= 0.1,
coefficient of restitution = 0, and coefficient of fric-
tion = 0. Within the Chrono simulation, we could
determine the position and orientation of the body
and beams (environmental geometry sensing), as well
as their contact forces (environmental force sensing).
Thus, in simulation, we could control the motors
based on these sensory inputs (feedback control).

To validate the simulation, we replicated the
experiments from previous research conducted with
a real robot [35]. Consistent with the previous find-
ings, we verified that the oscillatory motion aided the
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Figure 3. Physics model of robot-beam interaction. (A) Cockroach-inspired robot is modeled as an ellipsoidal rigid body. FX is
propulsive force. τ 1 and τ 2 are roll and pitch torques along the roll and pitch axes in figure 2. The center of mass (C) is lower than
the geometric center (O, the intersecting point of roll and pitch axes) by hc. (B) Each beam is modeled as a rigid plate with a
torsion spring with stiffness k. (C) F⃗1 and F⃗2 are theoretical contact forces with each beam calculated from the model. (D) Left: in
the pitch mode, the potential energy is at a maximum when the bottom of the robot reaches the top of the beam. Right: in the roll
mode, the potential energy is at a maximum when the robot rolls until there is no beam contact.

robot in transitioning from pitching to rolling to tra-
verse beams via passive interaction with the beams
(figures 2(B) and (C)).

2.2. Physics model of body-beams interaction
We built a physics model (figure 3) based on the
simulation robot design to estimate the beams’ stiff-
ness using environmental force sensing. The phys-
ics model consisted of the contact force model and
equations of motion.

Besides the input force Fx and torques (τ 1,
τ 2) from actuators acting on the simulation robot
(figure 3(A)), there were three external forces–
gravitational force G⃗ and contact forces (⃗F1, F⃗2) with
two beams (figure 3(C)). Given these, we could cal-
culate the total force F⃗ and torque τ⃗ . Thus, applying
Newton–Euler equations, the equations of motion of
the robot were:(

F⃗

τ⃗

)
=

(
M 0

0 ICoM

)(
α⃗

β⃗

)
+

(
0

ω⃗× ICoMω⃗

)
(2)

whereM was the mass, ICoM was the moment of iner-
tia about the center of mass, α⃗ and β⃗ were acceler-
ation and angular acceleration about the center of
mass, and ω⃗ was the angular velocity. In addition,
we assumed that actuators would not recycle energy.
For example, when the body rolls back to a lower
energy state, the decrease in mechanical energy is not
returned. Thus, energy is dissipated by motor doing
negative work, leading to a mechanical energy cost.

Because the beams were much lighter than the
robot, the inertial force of the beam was negli-
gible compared to the contact forces. Therefore, we
assumed that each beamwas quasi-static and satisfied
torque equilibrium during contact

kiθi − cdiωi + r⃗bi × F⃗i ·

 0
1
0

=
1

2
mgL sinθi (3)

where ki and cdi were the stiffness and damping
coefficients of the ith beam, θi and ωi were its beam
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deflection angle and angular velocity, r⃗bi was the dis-
tance from the revolute axis of the ith beam to the
point of application of F⃗i.

Because the robot’s body surface was smooth, the
coefficient of frictionwas set to zero in the simulation.
Thus, the contact force was normal to the tangent
plane of the contact point on the ellipsoidal body’s
surface.

The normal direction of the ellipsoidal body’s tan-
gent plane at a point (x,y,z) in the body frame was:

n⃗=
(
b2c2x,a2c2y,a2b2z

)
. (4)

Given the current position and orientation of the
robot and equations (3) and (4), the theoretical con-
tact forces F⃗1 and F⃗2 in the world frame was a func-
tion of stiffness k1 and k2.

2.3. Simulation studies to compare between
without and with force sensing
We conducted simulations to investigate the tra-
versal of beams with varying stiffness under dif-
ferent strategies. We first studied traversing both
flimsy and stiff beams (defined in section 2.5)
without force sensing, using three different strategies:
feedforward pushing without force/torque limits
(section 3.1.1), feedforward pushing with force/t-
orque limits (section 3.1.2), and avoiding obstacles
(section 3.1.3). Then, we studied traversal of both stiff
and flimsy beams using our force feedback strategy
(section 3.3).

For the feedforward pushing strategy without for-
ce/torque limits, the robot had an arbitrarily large
propulsive force to maintain a forward speed of
vX = 0.05 m s−1, with no control exerted over pitch
and roll directions.

For the feedforward pushing strategywith force/t-
orque limits, we set |Fx|⩽ 1 N, |τ1|⩽ 0.1 Nm, |τ2|⩽
0.1 Nm to examinemore realistic traversal with force
and limits. When any force or torque component of u⃗
calculated from equation (7) exceeded its limit, this
component was set to be the maximum or minimum
values within the limit.

For the obstacle avoidance strategy, we used
environmental geometry to determine the minimal
angle required for the robot to roll to traverse the
beams without contacting them. The robot main-
tained a forward speed of vX = 0.05 m s−1 utiliz-
ing roll control to rotate its body and avoid con-
tact. Although the above force/torque limits were also
applied in this scenario, the absence of contact resul-
ted in no resistance, so these limits were not reached.

For the force feedback strategy, we first estimated
beam stiffness based on the body contact force (sens-
ing time Ts = 100 ms) sensed after the initial con-
tact. Then, we constructed a potential energy land-
scape and performed motion planning. Finally, we
controlled the robot to track planned trajectories to
traverse flimsy and stiff beams. Detailed discussions

on the motion planning and control were provided
in sections 2.6 and 2.7. To be fair in comparison,
the same force/torque limits were also applied in this
scenario.

2.4. Estimating beam stiffness from force sensing
The vector sum of contact forces between the robot
and two beams were sensed with a sampling rate of
40 Hz, which were used to calculate the unknown
beam stiffness k1 and k2 in equation (3) by minimiz-
ing the error between the theoretical contact force F⃗=
F⃗1+ F⃗2 and themeasured force data F⃗sensed (using the
MATLAB ‘fminsearch’ function):

e=
N∑

i=1

∣∣∣⃗Fsensed (ti)− F⃗(k1,k2, ti)
∣∣∣ (5)

where N was the total number of the sampled force
data points at ti for i = 1 to N. To account for the
fact that this method could only determine a local
minimum, this process was repeated 100 times using
various randomly chosen initial guesses for stiffness,
increasing the likelihood of finding a global min-
imum. Initial guess values of k1, 2 were chosen ran-
domly from a uniform distribution within the range
of [0, 5] N m rad−1, which was the range of interest
for our study.

To quantify the estimation accuracy, we calcu-
lated the relative error of stiffness, which was the ratio
between the estimated error and its true value eki =
|k̂i−ki|

ki
, where k̂i is the estimate value (i = 1, 2), ki is

the true value of stiffness (k1 = k2 = 0.5 N m rad−1).
To study the robustness of the estimation accur-

acy, we studied the effect of randombody oscillations,
inaccurate position sensing, and sensing time.

2.4.1. Varying vertical and lateral body oscillations
with randomness
To investigate the impact of naturally occurring ran-
dom body oscillations [35] on our beam stiffness
estimation method, we simulated the robot’s move-
ment with lateral and vertical oscillations, generated
by linear actuators (figure 2(A)). The lateral oscilla-
tion followed the triangle wave function, with the fre-
quency f and amplitudeA. The vertical oscillation fol-
lowed a sum of 30 sine functions to induce random-
ness. The sum of sine functions is a strategy employed
in various research contexts to introduce unpredict-
able external stimuli [46–48]. The amplitude of each
sine function was randomly selected from −0.5 mm
to 0.5 mm, and the phase was randomly chosen from
−π to π. The frequencies of 30 sine functions were
f
50 ,

2f
50 ,

3f
50 , …, 30f50 . We conducted the simulations with

varying oscillation amplitude (A = 1, 2, 3 mm) and
frequency (f = 2, 4, 6 Hz), while assuming that the
position sensing remained accurate. We ran five trials
for each set of oscillation amplitude and frequency.
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2.4.2. Varying inaccuracy of position sensing
To study the impact of uncertainty in the sensed pos-
ition on the accuracy of beam stiffness estimation, we
used an inaccurate sensed Y position, by assuming
Y = 0 mm during traversal regardless of lateral oscil-
lation. Thus, the larger the lateral oscillation amp-
litude, the less accurate the sensed Y position was.
We ran simulations with an oscillation frequency of
6 Hz and varied the oscillation amplitude= 1, 2, and
3 mm. For each oscillation amplitude, we ran five
trials.

2.4.3. Varying sensing time
Given our constant forward speed, it only took the
robot 4.4 s to traverse a distance equal to its body
length. Thus, the robot needs to react fast, i.e., the
time cost of our method is important.

An inevitable time cost is sensing time, which is
required to obtain contact force data to estimate stiff-
ness. Therefore, we studied how beam stiffness estim-
ation accuracy depends on the sensing time, to inform
how long the robot needs to sense to obtain a reason-
able estimate. We conducted tests using sensing time
Ts = 25, 50, 100, and 200 ms, with a data sampling
rate of 40 Hz. These tests were collected at an oscilla-
tion amplitude of 1mm and a frequency of 2 Hz, with
five trials executed for each individual sensing time.

2.5. Potential energy barrier calculation to
differentiate between stiff and flimsy beams
Cockroaches use different strategies when travers-
ing flimsy and stiff beams [35]. A critical stiffness
helps categorize whether beams are stiff and should
be traversed via the role mode (rolling through the
gap between beams), or whether they are flimsy and
should be traversed via the pitchmode (push over the
beams).

To find the critical stiffness, we calculated the
potential energy barrier corresponding to the pitch
and roll modes. This allowed us to estimate which
mode costs less mechanical energy for traversing stiff
or flimsy beams. The potential energy of the system
consisted of the gravitational potential energy of the
robot and the elastic potential energy of the beams:

E(X,α,β) =MgZCoM (α,β)+
1
2
mgL(cosθ1 + cosθ2)

+
1
2
k1θ1

2 +
1
2
k2θ2

2 (6)

whereZCoM (α,β)was the height of the center ofmass
from the ground, θ1 and θ2 were beam deflection
angles, which were functions of α, β, and X. We var-
ied X from −0.12 m to 0.12 m with an increment of
∆X= 0.002m andα and β from−90◦ to 90◦ with an
increment of∆α or∆β = 2◦ to obtain a 3D potential
energy landscape over the entire (α, β, X) workspace
during traversal (figure 4(A)).

For simplicity, we started with the case where
two beams had the same stiffness (k1 = k2 = k0).

For the pitch mode, we assumed that the potential
energy reaches the maximum when the robot’s bot-
tom reaches the top of the beams where beams were
deflected most (figure 3(D), left). Thus, its potential
energy barrier was PEpitch (θ) = 2× 1

2k0θ
2, which was

the elastic potential energy of two beams. Because
cosθ0 =

H
L , we had PEpitch = k0(cos−1 H

L )
2. For the

rollmode, the potential energy reached themaximum
when the robot rolled until therewas no contact in the
entire traversal (figure 3(D), right). Thus, its potential
energy barrier was PEroll =Mg ·∆h, which was the
increase of gravitational potential energy of the body.
Using the principles of similar triangles, we obtained
∆h= hc

(
1− d

2b

)
, which was the lifted height of cen-

ter of mass of the body (figure 3(D), right).
When PEpitch− PEroll = 0, the threshold beam

stiffness, k0 =
Mg hc(1− d

2b )
(cos−1 H

L )
2 . Because PEroll did not

depend on beam stiffness whereas PEpitch was pro-
portional to it, the barrier difference PEpitch−
PErollmonotonically increased with k0. Above this
threshold, the roll mode was advantageous due
to its lower energy barrier, whereas below this
threshold, the pitch mode had a lower barrier.
Substituting the parameters’ values given in the
simulation robot design (section 2.1), we obtained
k0 = 0.146 N m rad−1.

For simplicity, we selected a single rep-
resentative stiffness value for each category:
klow = 0.01 N m rad−1 and khigh = 0.2 N m rad−1

as the stiffness of flimsy and stiff beams, respectively.

2.6. Force feedback strategy motion planning
For the force feedback strategy, we need to obtain the
desired trajectory for traversing beams in X, roll, and
pitch space according to beams stiffness. To determ-
ine this trajectory, a prediction of the mechanical
energy cost associated with a given path was neces-
sary. A weighted directed graph (figure 4(B)), com-
posed of vertices and directed edges, was construc-
ted based on the energy landscape (section 2.5). Each
vertex was connected through directed edges to its six
closest neighbors, (X±∆X, α, β), (X, α±∆α, β),
and (X, α, β±∆β), where the increments were
defined in section 2.5. The directed edge had a value
representing the mechanical energy cost. The total
mechanical energy cost of a path in the network
equaled the sum of the values attributed to its con-
stituent directed edges. In a straightforward predic-
tion and approximation, we defined the value of a
directed edge leading to a state with greater potential
energy to be positive, quantified by the increase in this
potential energy. The value of a directed edge head-
ing towards a state with lower potential energy was
defined as zero, denoting no energy cost and recovery
for such transitions (figure 4(B)).

For each trajectory, we defined the initial state
as the state when the robot started the active con-
trol (ts), following a sensorimotor delay ∆t from its
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Figure 4.Motion planning. (A) 3D potential energy landscape of the robot-beam interaction system. (B) Schematic of the
weighted directed graph based on potential energy landscape. Circles are states. Values in circles show the potential energy (in
Joules) at each state, while values on directed edges show the predicted mechanical energy cost of the movement along the edge.
(C) The path from the initial to the target state in the weighted directed graph, with the minimal predicted mechanical energy cost.

first contact with the beams (tc). The sensorimotor
delay was ∆t = ts − tc. The target state was defined
as the state after traversal at X = 0.1 m with the hori-
zontal body pose (α = β = 0◦). Given the direc-
ted weighed graph (figure 4(B)), the A-star algorithm
[49] was used to search for the path of the minimal
cost between the initial and target states (figure 4(C)),
with the heuristic function being the potential energy
difference of two states. The A-star algorithm oper-
ates by evaluating the cost to travel from one node to
another, coupled with a heuristic that estimates the
cost to reach the goal from a given node. We took this
path as the planned path.

2.7. Force feedback strategy motion control
For the force feedback strategy, motion control was
required to track the planned trajectory. We con-
trolled the roll and pitch angle while maintaining a
forward speed of vX = 0.05 m s−1. This constant for-
ward speed setting simplified the control process and
was retained from the prior design [35]. Based on the
position error, we used a model-based feedback con-
trol to obtain the control input at every 0.002 s:

u⃗= Fext (⃗q)−Kp

(⃗
q−−→qd

)
(7)

where q⃗= (X,α,β) was the current state and −→qd =
(Xd,αd,βd) was the desired state. Kp was positive
feedback gain (we chose 0.1). u⃗= (τ1, τ2,FX) was the
control input (figure 3(B)). τ1, τ2 are pitch and roll
torques. FX is the force along X direction. Fext (⃗q)was
the external force calculated from the contact force
model (section 2.2), including contact forces with
beams and the gravitational force. With the control
input u⃗, the current state was controlled to approach
the desired state at every time step.

2.8. Motor work calculation to compare across
strategies
To compare the mechanical energy cost of different
strategies, we calculated the work done by actuators
in the entire traversal using the below function:

Ecost =
m∑
i=1

[
(FXvX)

+
+(τ1ω1)

+
+(τ2ω2)

+
]
dt (8)

wheremwas the number of control steps in the entire
traversal time, dt = 0.002 s was the control time step
(section 2.7). (FXvX) was the power of the force FX.
(τ1ω1) and (τ2ω2)were the powers of two torques (τ1,
τ2). The symbol ‘+’ meant (f)+ =max{f,0}, as we
assumed that actuators would not recycle energy.
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2.9. Varying sensorimotor delay for force feedback
strategy
Sensorimotor delay is inevitable in both animals and
robots. To study the impact of sensorimotor delay on
traversal performance of our force feedback strategy,
we conducted simulationswith three different sensor-
imotor delays ∆t= 320, 480, and 640 ms and evalu-
ated its impact on mechanical energy cost from actu-
ators (equation (8)). Sensorimotor delay was defined
as the time interval between the instant of the first
contact with beams and the start of actuators, incor-
porating the previously mentioned sensing time Ts.
For simplicity, and to better show the impact of sen-
sorimotor delay, the initial body pitch angle star-
ted with zero angle and the actuators did not gen-
erate body oscillations. Because the simulation was
deterministic without randomness, we ran one trial
for each sensorimotor delay.

3. Results

We found that each of the three strategies without
force sensing offers distinct advantages and draw-
backs when traversing flimsy and stiff beams
(section 3.1). Our force feedback strategy had the
combined strengths of these methods, facilitating
enhanced beam traversal of both flimsy and stiff
beams (section 3.3). Beam stiff estimation was
robust against random oscillations (section 3.2).
Additionally, the mechanical energy cost during tra-
versal increased with sensorimotor delay for the force
feedback strategy (section 3.4).

3.1. Traversing flimsy and stiff beams without force
sensing
3.1.1. Feedforward pushing without force/torque limits
When encountering flimsy beams, the robot pushed
over beams with a small body pitch angle (<4◦)
(figure 5(A), bottom; movie 1) and small contact
force (<0.13 N). Its energy cost over the entire tra-
versal was 14.8 mJ. When encountering stiff beams,
the robot was pushed by the beams to oscillate up
and down over a wide range of angles ([−37◦, 38◦])
(figure 5(A), top; movie 1), and the maximal resist-
ive force from the beams reached 1.5 N. If the robot
were freely moving on the ground and experienced
such large pitch oscillations, it could easily lose sta-
bility and flip over. In addition, the robot’s mechan-
ical energy cost over the entire traversal was 185.2 mJ,
much larger than during flimsy beam traversal.

3.1.2. Feedforward pushing with force/torque limits
When encountering flimsy beams, the robot behaved
the same as it did with unlimited force because
the resistive force was smaller than the force limit
(figure 5(B), bottom; movie 1). However, when
encountering stiff beams, the robot was stuck in front
of the beams (figure 5(B), top; movie 1). The body

pitched up substantially in this process, and it then
oscillated up and down in pitch from intermittent
contact with beams.

3.1.3. Avoiding obstacles
Because beams with different stiffness had the same
environmental geometry, the robot moved in the
exact same way when traversing flimsy and stiff
beams (figure 5(C); movie 1). Its energy cost was
35.8 mJ. The obstacle avoidance strategy did save
much energy compared to the feedforward push-
ing strategy (185.2 mJ) when the obstacle was stiff.
However, the obstacle avoidance strategy was not
the best option for the flimsy beams. Its energy cost
was higher than the feedforward pushing strategy
(14.8 mJ), and the large body rolling required to
avoid the beams could make it challenging to main-
tain stability.

3.2. Estimating beam properties in simulation
We estimated the stiffness of the beams using the
contact physics model and studied the robustness of
the estimation accuracy against random body oscil-
lations, inaccuracy position sensing, and the varying
sensing time.

3.2.1. Estimation of beam stiffness under random body
oscillations
Our estimation results for two beams’ stiffness (k̂1,
k̂2) across varying oscillation frequencies indicated
that the estimation accuracy was not notably affected
by the oscillation frequencies (table 1) or amp-
litudes (table 2). Although the oscillation caused
more collisions and intermittent body-beam contact,
our approach still obtained an accurate estimation
of stiffness (relative error ek < 5% in 90% trials),
which was a prerequisite for motion planning and
control.

3.2.2. Estimation of beam stiffness with position
sensing error
In the above estimation, although oscillations and
randomness were introduced, the robot still had
accurate measurements of its position relative to the
obstacles. However, in practice, the robot’s position
sensing may not be accurate because of its intense
oscillations.

Through calculating the mean of relative errors
( ek1+ek2

2 ) of beams’ stiffness among trials, we dis-
covered that, generally, an increase in oscillation
amplitude led to an increase in the relative error
of estimation (figure 6) as well as an increase in
the variation of estimation among different tri-
als. Despite these, the estimation accuracy was still
acceptable (relative error ek < 15%), which was suffi-
cient for differentiating stiff and flimsy beams. Thus,
our estimation was robust against errors in position
sensing.
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Figure 5. Representative snapshots of simulation robot traversing stiff and flimsy beams using different strategies. (A)
Feedforward pushing strategy with unlimited propulsive force. The robot traversed both stiff and flimsy beams. (B) Feedforward
pushing strategy with limited propulsive force. The robot was stuck in front of stiff beams but pushed over flimsy beams. (C)
Obstacle avoidance strategy with force/torque limits. The robot successfully traversed both stiff and flimsy beams without contact.

Table 1. Error in beam stiffness estimation (in N m rad−1) for
varying oscillation frequencies (five trials each).

Frequency (Hz) 2 4 6

k̂1 (ek1) 0.484 (3.3%) 0.475 (5.1%) 0.477 (4.7%)

k̂2 (ek2) 0.473 (5.4%) 0.479 (4.3%) 0.475 (4.9%)

Table 2. Error in beam stiffness estimation (in N m rad−1) for
varying oscillation amplitudes (five trials each).

Amplitude (mm) 1 2 3

k̂1 (ek1) 0.484 (3.3%) 0.482 (3.6%) 0.483 (3.3%)

k̂2 (ek2) 0.473 (5.4%) 0.477 (4.6%) 0.477 (4.6%)

3.2.3. Effect of sensing time on beam stiffness
estimation
We varied sensing time Ts to study its impact on
estimation of beams stiffness. A longer sensing time
means more data can be used in model fitting.
As expected, a longer sensing time resulted in a
decrease in the combined relative estimation error
(table 3, ek1+ ek2). This sum represents the overall
error. However, for a sufficiently long sensing time
(⩾50 ms), further increasing sensing time (adding
more sensed data) did not improve estimation accur-
acy substantially, because the randomness and mod-
eling error became dominant (table 3).

3.3. Traversing beams with force feedback
The simulation results showed that the force feedback
strategy worked well, and the traversal was success-
ful for both flimsy and stiff beams (figure 7; movie
1). The mechanical energy cost to traverse flimsy
beams was 15.0 mJ, which was almost the same as
that of the feedforward pushing strategy (14.8 mJ;
section 3.1.1). The slight increase in energy might
be attributed to its cost in pitch control to track

desired pitch angle. The mechanical energy cost to
traverse stiff beams was 17.4 mJ, which was much
smaller than that of the feedforward pushing strategy
(185.2 mJ; section 3.1.1). It also consumed less mech-
anical energy than the obstacle avoidance strategy
(35.8 mJ; section 3.1.3), because the robot could lean
against the beams between the gap and the interac-
tion/forces torques with beams helped the robot roll.

In comparison to strategies without force sens-
ing, our force feedback strategy had the advantage of
being able to adaptively traverse beams in response to
beam properties (table 4). Without force sensing, it
was impossible to differentiate between beam types,
leading to the use the same strategy for both stiff
and flimsy beams. While the feedforward pushing
strategy was effective for flimsy beams, it was chal-
lenged by stiff beams, leading to significant energy
costs if the force/torque limits were not reached, or
causing the robot to become stuck upon reaching
that limits. On the other hand, the obstacle avoid-
ance strategy, although working well for stiff beams,
was not optimal for flimsy ones due to high energy
costs. By incorporating force sensing, our force feed-
back strategy required minimal energy cost during
the traversal of both beam types and reduced the risk
of the robot getting stuck. Unlike the feedforward
pushing strategy, which failed to traverse stiff beams
with force/torque limits, our force feedback strategy
successfully traversed them even with force/torque
limits.

3.4. Traversal performance with different
sensorimotor delay
The longer the sensorimotor delay was, the more
the robot had pitched up when it started active con-
trol (figure 8(A)). Despite this, the robot traversed
in all trials (movie 1). We found that the longer the
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Figure 6.Mean of relative estimation error ( ek1+ek2
2

) as a function of oscillation amplitude. Five trials were performed at each
oscillation amplitude. The blue curve represents the mean, and the shaded area indicates the standard deviation (±s. d.).

Table 3. Error in beam stiffness estimation for different sensing times (five trials each, f = 2 Hz, Al = 1 mm).

Ts 25 ms 50 ms 100 ms 200 ms

k̂1(ek1) 0.531 (6.2%) 0.513 (2.6%) 0.516 (3.2%) 0.522 (4.4%)

k̂2(ek2) 0.383 (23.4%) 0.473 (5.4%) 0.491 (1.8%) 0.488 (3.2%)

Figure 7. Snapshots of the robot traversing stiff and flimsy beams using force feedback.

Table 4.Mechanical energy cost of different strategies for traversing stiff and flimsy beams (one trial each).

Strategy Pushing without force limit Pushing with force limit Obstacle avoidance Force-feedback control

Stiff beams 185.2 mJ Failure 35.8 mJ 17.4 mJ
Flimsy beams 14.8 mJ 14.8 mJ 35.8 mJ 15.0 mJ

sensorimotor delay, the more energy cost from for-
warding and rotation (both roll and pitch) actuat-
ors (figure 8(B)). Thus, the faster the robot could

estimate the properties of obstacles and respond after
encountering obstacles, the more energy it would
save.
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Figure 8. Influence of sensorimotor delay. (A) Snapshots showing system configuration when the control started after different
sensorimotor delays. (B) Mechanical energy cost from forwarding and rotation (both roll and pitch) actuators (FX and TR cost) as
a function of sensorimotor delay (one trial each).

4. Discussion

Our modeling and simulation results showed that
environmental force sensing can help robots determ-
ine previously unknown beam properties and inform
planning and control accordingly to traverse cluttered
obstacles by effectively using physical interaction. We
compared our new force feedback traversal strategy
with commonly used traversal strategies, feedforward
pushing and obstacle avoidance, in simulation. The
force feedback strategy based on force sensing helped
the robot save mechanical energy cost during beam
traversal, prevented it from becoming stuck in front
of beams, and could prevent it from flipping over.

Our modeling study demonstrated the useful-
ness of body contact force sensing for estimating ter-
rain properties and allowing robots to traverse large,
cluttered obstacles with enhanced performance. This
novel capability to use the body to sense environ-
mental contact forces to infer environmental phys-
ics and guide motion control will be directly use-
ful for RHex-class robots [50, 51] moving in com-
plex 3D terrain, and it will also catalyze more diverse
robot platforms to sense and use body-obstacle phys-
ical interaction (in addition to sensing leg-ground
interaction [37–42]) to better move in the real world.
Our lab is currently developing a robophysical model

of the body-beam interaction system, instrumented
with custom internal 3D force sensors and distrib-
uted external contact sensors [52]. Building on the
modeling insight here, we will use it to further study
the principles of mechanical sensory feedback con-
trol and demonstrate advancement in a real robotic
system.

In addition to robotics, our work also has implic-
ations for biology. The discoid cockroach (and other
animals that use body-environment physical interac-
tion to traverse cluttered large obstacles) uses load-
sensitive mechanoreceptors distributed throughout
their body [53] to sense contact. Our modeling sug-
gested that this sensory information may help them
use locomotor modes that are less costly to traverse.
Such mechanical sensory feedback can complement
eyes [54] and antennae [55] that sense the visu-
al/geometric information of the environment and
help them better traversing cluttered obstacles with
reduced energy cost.

Our motion planning has limitations that require
further examination. We neglected the effect of
body inertia and assumed constant forward speed
in motion planning. These approximations and
assumptions simplify the system modeling and ana-
lysis, but they may compromise traversal perform-
ance. We attempted to apply optimal control while
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considering body inertia and allowing forward speed
to vary. However, it was challenging to find the global
minimum because of the non-smooth nature of con-
tact force (for example, abrupt changes in contact
force during the transition from roll to pitch mode)
and intermittent collisions between the robot body
and beams.

While this work simplifies obstacles by modeling
them as rigid plates with torsion springs, our pro-
posed approach should extend to a variety of other
obstacles. The only prerequisite for our method is the
availability of a model that establishes the relation-
ship between contact force and physical properties of
obstacles. If the robot encountered a new obstacle,
we could develop a physics model tailored to it. For
example, when dealing with movable rigid obstacles,
considerations such as resistive force and displace-
ment in all directions would become crucial factors
in the model and could be monitored through con-
tinuous force sensing. Such an extension will be use-
ful in search and rescue operations amidst earthquake
rubble, where obstacle avoidance may not be feasible
and obstacles vary in stability, rigidity, and mobility.
By employing force sensing, we can formulate a tra-
versal strategy to decide whether to lean on, avoid, or
push obstacles away.

We focused on using the predictive physics model
to estimate unknown obstacle physical properties.
Future work should also expand its use in robot con-
trol. For example, feedback control (equation (7))
requires real-time reading of the robot’s states and
external forces. However, because there is a time delay
in sensors, the actual control input is always calcu-
lated using the state and external forces from the pre-
vious moment. Therefore, when velocities or acceler-
ations are large, the control may not be timely and
may lead to unexpected collisions. In this case, the
physics model can be used to predict the evolution of
the state and external forces and enablemore effective
and timely control of robots.
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