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To traverse complex three-dimensional terrainwith large obstacles, animals and
robots must transition across different modes. However, most mechanistic
understanding of terrestrial locomotion concerns how to generate and stabilize
near-steady-state, single-mode locomotion (e.g. walk, run). We know little
about how to use physical interaction to make robust locomotor transitions.
Here, we review our progress towards filling this gap by discovering terrady-
namic principles of multi-legged locomotor transitions, using simplified
model systems representing distinct challenges in complex three-dimensional
terrain. Remarkably, general physical principles emerge across diverse model
systems, by modelling locomotor–terrain interaction using a potential energy
landscape approach. The animal and robots’ stereotyped locomotor modes
are constrained by physical interaction. Locomotor transitions are stochastic,
destabilizing, barrier-crossing transitions on the landscape. They can be
induced by feed-forward self-propulsion and are facilitated by feedback-
controlled active adjustment. General physical principles and strategies from
our systematic studies already advanced robot performance in simple model
systems. Efforts remain to better understand the intelligence aspect of locomotor
transitions and how to compose larger-scale potential energy landscapes of
complex three-dimensional terrains from simple landscapes of abstracted chal-
lenges. This will elucidate how the neuromechanical control system mediates
physical interaction to generate multi-pathway locomotor transitions and lead
to advancements in biology, physics, robotics and dynamical systems theory.
1. Introduction
To move about, animals can use many modes of locomotion (e.g. walk, run,
crawl, slither, burrow, climb, jump, fly and swim) [1,2] and often transition
between them [3,4]. Despite this multi-modality, the most mechanistic under-
standing of terrestrial locomotion has been on how animals generate [5–8] and
stabilize [9–11] steady-state, limit cycle-like locomotion using a single mode.

Previous studies began to reveal how terrestrial animals stochastically tran-
sition across locomotor modes in complex environments. Locomotor transitions,
like other animal behaviour, emerge from multi-scale interactions of the animal
and environment across the neural, postural, navigational and ecological levels
[12–14]. At the neural level, terrestrial animals use central pattern generators
[15] and sensory information [16–18] to switch locomotormodes to traverse differ-
ent media or overcome obstacles. At the ecological level, animals foraging across
natural landscapes switch locomotor modes to minimize metabolic cost [19]. At
the intermediate level, terrestrial animals transition betweenwalking and running
to save energy [20]. However, there remains a knowledge gap in how locomotor
transitions in complex three-dimensional terrain emerge from physical interaction
(i.e. terradynamics [21]) of an animal’s body and appendages with the environ-
ment mediated by the nervous system. We lack theoretical concepts for
thinking about how to generate and control locomotor transitions on the same
level of limit cycles for steady-state, single-mode locomotion [22].
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Figure 1. Multi-pathway transitions to avoid and traverse obstacles. (a) View from a self-driving car. (b) Geometric map scanned. (c) Multi-pathway driving tran-
sitions to avoid obstacles. (d ) Envisioned capability of robot traversing complex three-dimensional terrain with many obstacles as large as itself. (e) Abstracted
challenges from diverse large obstacles. ( f ) Envisioned multi-pathway locomotor transitions. Image credits: (a,b), Modified with permission from [23] under Creative
Commons CC-BY license. (d) Modified with permission from Luke Casey Photography. (Online version in colour.)
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Understanding of how to use physical interaction with
complex three-dimensional terrain to generate and control
locomotor transitions is also critical to advancing mobile
robotics. Similar to personal computers in the 1970s, mobile
robots are on the verge of becoming a major part of society.
Wheeled robots like robotic vacuums and self-driving cars
(figure 1a) already excel at avoiding sparse obstacles to navigate
flat homes, streets and even unpaved roads, by scanning a geo-
metricmap of the environment (figure 1b) and acting upon it to
transition between driving modes (figure 1c) [24]. This owes to
the well-understood wheel–ground interaction physics [25,26].
Understanding of appropriate leg–ground physical interaction
to generate and stabilize steady-state running andwalking [5,6]
enabled animal-like legged robot locomotion (such as from
Boston Dynamics) on near-flat surfaces with small obstacles.
However, despite progress in robot design, actuation and
control for multi-modal locomotion [3], robots still struggle to
make robust locomotor transitions to traverse obstacles as
large as themselves, hindering important applications such as
environmental monitoring in forests (figure 1d), search and
rescue in rubble and extraterrestrial exploration through
rocks. This is largely due to a poor understanding of physical
interaction in complex three-dimensional terrain.

Aphysics-based approach by creating a new field of terrady-
namics [21] holds promise for filling this major gap. For aerial
and aquatic locomotion of animals and robots, we understand
fairly well their fluid–structure interaction thanks to well-estab-
lished experimental, theoretical and computational tools, such
as wind tunnel and water channel, aerofoil and hydrofoil,
aero- and hydrodynamic theories, and computational fluid
dynamics techniques [27]. By creating controlled granular
media testbeds, robotic physical models [28,29], and theoretical
and computational models, recent studies elucidated how
animals (and how robots should) use physical interaction with
granular media to move effectively both on and within sandy
terrain (see [30] for a review). The general physical principles
[30] and predictive physics models [21,30] not only advanced
understanding of functional morphology [31–33], muscular
control [34,35] and evolution [36] of animals, but also led to
new design and control strategies [28,30,37–40] that enabled a
diversity of robots to traverse granular environments.

Inspired by these successes, our group has been expanding
the field of terradynamics to locomotion in complex three-dimen-
sional terrain, by integrating biological experiments, robotic
physical modelling and physics modelling (figure 2). Here, we
review our approaches, progress and opportunities ahead. This
review focuses on multi-legged locomotor transitions; for our
work on limbless locomotion in three-dimensional terrain, see
[42–47]. We studied the rainforest-dwelling discoid cockroach
(figure 3a), which is exceptional at traversing complex three-
dimensional terrain with diverse large obstacles such as
vegetation, foliage, crevices and rocks [4]. Just like how under-
standing the aerodynamics of passive aerofoils provides a
foundation for understanding flight control [60], we first focused
onunderstandingpassivemechanical interaction,whichprovides
a foundation forunderstanding sensory feedbackcontrol (and the
intelligence aspect of locomotor transitions in general). This is
achieved by studying the animal in the rapid, bandwidth-limited
escape [61] or emergency self-righting response and feed-for-
ward-controlled robotic physical models. Although still at an
early stage, our work begins to reveal general physical principles
of locomotor transitions, which is remarkable considering that
complex three-dimensional terrain is highly heterogeneous with
diverse obstacles. Our work again demonstrates the power of
interdisciplinary integration to discover terradynamic principles.
2. Experimental tools
(a) Model terrain
To begin to understand complex physical interaction during
locomotion in nature (figure 1d), we abstracted complex three-
dimensional terrain as a composition of diverse large obstacles
(figure 1e) that present distinct locomotor challenges. These
include compliant beams [50,51], rigid pillars [52], gaps [53]
and bumps [54]. To enable systematic experiments (as in
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royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20202734

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 M

ay
 2

02
1 
a wind or water tunnel), for each model terrain, we created a
testbed that allowed controlled, systematic variation of obstacle
properties such as stiffness [50], geometry [52] and size [53,54]
(figure 3b). In addition, because animals and robots often flip
over when traversing large obstacles [4,52,55], we studied stren-
uous ground self-righting inwhich existing appendagesmust be
co-opted [55–59]. Furthermore, we developed tools to address
technical challenges in measuring locomotor transitions and
locomotor–terrain interaction in complex three-dimensional ter-
rain (figure 3b–d; electronic supplementary material, Text S1).

Although studying locomotor transitions to overcome these
challenges separately is an amenable first step (figure 1f ), in the
real world, animals and robots must continually transition
across locomotor modes to traverse diverse obstacles over
large spatio-temporal scales (figure 1e). To study continual
transitions, we developed a terrain treadmill (figure 3e) to
study locomotion through large obstacles over a long time
and a large distance [48], while allowing finer features such
as antenna and leg motion to be observed at a high spatial
resolution [49]. This research direction is still at an early stage.

(b) Robotic physical models
We created simplified robotic physical models [28,29] of each
model system (figure 3f–j). These robots offer several advan-
tages as experimental platforms. First, they generate relevant
locomotor behaviour using minimalistic design, actuation
and sensing, facilitating analysis and modelling. In addition,
they are more amenable than animals to controlled parameter
variation and hypothesis testing. Moreover, running the robot
in open loop allows isolating the effects of passive mechanics
from that of sensory feedback. Finally, they cannot violate the
laws of physics because robots are enacting, not modelling,
the laws of physics [62].

We emphasize that our robotswere designed and controlled
to generate relevant locomotor transitions that we studied, not
optimized for maximal performance. However, the physical
principles revealed by these tools are generalizable and can pre-
dict how to increase performance [4,28,29,50–55,57–59] (§4d).
3. Modelling approaches
(a) Potential energy landscape modelling
Understanding how locomotor transitions emerge from
locomotor–terrain interaction probabilistically (§4a) calls for a
statistical physics approach. A statistical physics treatment has
advanced understanding of complex, stochastic, macroscopic
phenomena in self-propelled living systems, such as animal fora-
ging [63], traffic [64] and active matter [65,66]. Here, we created
potential energy landscape models (figure 4b), directly inspired
by free energy landscapes for modelling multi-pathway protein
folding transitions [67–69]. The near-equilibrium, microscopic
proteins statistically transition from higher to lower, thermody-
namically more favourable states on the free energy landscape.
Thermal fluctuation comparable to free energy barriers
induces probabilistic barrier crossings. These physical principles
operating on a rugged landscape leads tomulti-pathway protein
folding transitions. Although our locomotor–terrain interaction
systems are macroscopic, self-propelled and far-from-
equilibrium, their locomotor transitions display similar
features, including stochasticity, multi-pathway transitions, kin-
etic energy fluctuation (from oscillatory self-propulsion) and
favourability of some modes over others [4,51–54,56–59], but
with the addition of intelligence.

Given these similarities, we hypothesized that locomotor
transitions are barrier-crossing transitions between basins of
potential energy landscapes of our systems. We tested this
hypothesis in each model system (figure 4; electronic
supplementary material, text S3–S7). To discover general prin-
ciples of locomotor transitions, we systematically varied system
parameters and studied how they affect locomotor transitions.
For how to use potential energy landscape modelling, see
electronic supplementary material, text S2.

A potential energy landscape approach to modelling
locomotor–terrain interaction is plausible also considering
the success of potential energy field methods in modelling
robotic manipulation. Similar to our systems, robotic part
alignment [70] and grasping [71] have continual collisions,
multiple pathways to reach the goal [70] and favourability
of some contact configurations over others [72]. Given these
complexities, quasi-static potential energy fields well
explained how system properties like geometry and friction
affect part-manipulator interaction and informed strategies
to achieve desired alignment or manipulation [70].

We emphasize that our potential energy landscapes
directly result from physical interaction and are based on
first principles, unlike artificially defined potential functions
to explain walk-to-run transition [73] and other non-equili-
brium biological phase transitions [74], metabolic energy
landscapes inferred from oxygen consumption measure-
ments to explain behavioural switching of locomotor
modes [19] and artificial potential fields for robot obstacle
avoidance [75].

For simplicity, our potential energy landscapes so far only
considered the most relevant system degrees of freedom
(body rotation and translation in obstacle traversal, body
rotation and wing opening in self-righting). In addition,
they do not yet model system dynamics, which is required
for the quantitative prediction of locomotor transitions
(§5a). Despite these limitations, they provided substantial
insight into the general principles and strategies of obstacle
traversal and strenuous ground self-righting (§4).
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(b) Dynamic templates and simulations
Although our model systems follow Newton’s laws, it is often
challenging to solve equations ofmotion analytically due to the
hybrid contact [22] and high-dimensional parameter space. As
a first step to understand transition dynamics, we developed
dynamical templates for two model systems, large gap traver-
sal [53] (figure 3k) and strenuous ground self-righting [58]
(figure 3l ), for which equations of motion are solvable when
two-dimensional dynamics is considered. Templates are the
simplest dynamical models that capture the fundamental
dynamics of a locomotor behaviour using minimal degrees of
freedom [76]. For these two systems, our templates enabled
quantitative prediction of contact and actuator forces [58], con-
trol strategies for traversal [53] or self-righting [58], and how
they depend on system parameters [53,58].

In addition, for strenuous ground self-righting, we devel-
oped multi-body dynamics simulations of the robot validated
against experiments [59] to study the effect of randomness
in wing–leg coordination (figure 3m). These simulations
enabled large-scale variation of relevant parameters ident-
ified from experiments and in-depth analysis at a precision
difficult to achieve in animals and robots. Finally, simulation
is faster than experiments [59].
4. Insights and general principles from simple
model systems

Our studies revealed how locomotor transitions depend on
system parameters (gap width, beam stiffness, body shape,
etc.; electronic supplementary material, table S1). For each
model system, these physical principles are generalizable
over the relevant parameter space and helped improve
robot performance. Although our model systems are level,
our approach also applies to interactions on slopes.

Across model systems, a potential energy landscape
approach helps understand how the animal’s and robot’s
stereotyped, probabilistic locomotor transitions are con-
strained by physical interaction. Several general physical
principles and new concepts emerge.

(a) Locomotor modes are stereotypical and transitions
are stochastic

For all model systems, the animal displayed stereotyped loco-
motor modes with qualitatively similar body postural
changes [4,50–54,56,57]. Not all modes lead to successful
obstacle traversal or self-righting. Transitions between
modes occur stochastically, with large trial-to-trial variation
[4,50,51,53,54,56,57]. The probability of using or transitioning
to a mode strongly depends on locomotor and terrain par-
ameters that affect physical interaction [4,50,52–54,56,57]
(§4f). The robot’s locomotor modes are also stereotyped
and transitions stochastic [4,50–55,57].

(b) Locomotor transitions are destabilizing barrier-
crossing transitions on a potential energy landscape

For all model systems, the system state in each mode is
strongly attracted to a local minimum basin of the potential
energy landscape over the relevant body state space [50–
52,54,57] (figure 4; electronic supplementary material, figures
S2–S6 and movie S1). This is because self-propulsion induces
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continual body–terrain collisions during obstacle interaction
and self-righting, which breaks continuous frictional contact
and makes the system statically unstable. This leads the
system to drift down the basin until a sufficient perturbation
induces an escape from the basin. However, the system does
not stay at the minimum due to self-propulsion. Due to this
strong attraction to landscape basins, the transition from
one locomotor mode to another requires the system to
destabilize itself to escape from one basin to fall into another.

(c) There exists a potential energy landscape-
dominated regime of locomotion

These observations across diverse model systems mean that
there is a potential energy landscape-dominated regime of loco-
motion. In this regime, alongwith certain directions, there exist
large potential energy barriers that are comparable to or exceed
kinetic energy and/ormechanical work generated by each pro-
pulsive cycle or motion. This may happen when propulsive
forces are either limited by physiological, morphological and
environmental (e.g. low friction) constraints or are not well
directed towards directions along which large barriers exist
for the desired transition. These situations are frequent in
large obstacle traversal and strenuous ground self-righting. In
this regime, not only do potential energy landscapes provide
a useful statistical physics approach for understanding loco-
motor transitions, but it also allows comparison across
systems (different species [56], robots [4,52], terrain [50,52–54]
and modes [4,50,52,56,57]) to discover general principles.
Outside of this regime, potential energy landscapes are not
useful or necessary. Such examples include ballistic jumping
over small obstacles with kinetic energy far exceeding potential
energy barriers, moving on slopes with potential energy
increasing or decreasing monotonically, and traversing
obstacles much smaller or larger than body size.

(d) Feed-forward self-propulsion can induce locomotor
transitions

Using robotic physical models, we discovered several prin-
ciples of locomotor transitions with feed-forward self-
propulsion. First, locomotor kinetic energy fluctuation from
self-propulsion helps the system stochastically cross potential
energy barriers to make transitions [50,57]. In addition,
escape from a basin is more likely in directions on the land-
scape along which the barriers are lower [50,57]. Finally,
during a transition, the system tends to transition to more
favourable modes attracted to lower basins [50,52,57]. The
animal’s locomotor transitions also largely followed
these principles during rapid, bandwidth-limited escape or
emergency self-righting response [50–54,56,57].

(e) Feedback-controlled active adjustments can assist
locomotor transitions

Not surprisingly, the animal can make active adjustments to
facilitate or enable desired transitions when feed-forward
self-propulsion is insufficient. For example, even when
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body kinetic energy fluctuation becomes comparable to, but
is still lower than, the potential energy barrier, the animal
transitions to a more favourable mode to traverse beam
obstacles [50], by actively adjusting body and appendages
[51]. Understanding this intelligence aspect of locomotor
transitions is clearly the next step. We have begun studying
the principles of feedback-controlled locomotor transitions
by creating robotic physical models with force sensing [51].

( f ) A suite of strategies can modulate locomotor
transitions and increase performance

Because locomotor transitions are barrier-crossing transitions,
they can be enhanced or suppressed by steering the system
state on the landscape, changing landscape barriers, or even
modifying landscape topology (the number of basins). This
insight allowed us to discover a suite of strategies (figure 4c)
to make desired transitions more probable for each model
system (figure 4a), elaborated below.

In bump traversal, approaching with a head-on (body
sagittal plane perpendicular to bump), pitched-up body pos-
ture directs the system to overcome a barrier to reach a
desired climb basin/mode and avoid being attracted towards
a deflect basin/mode (figure 4(i)) [54]. Similarly, in gap tra-
versal, approaching with a large forward velocity and
upward pitching velocity and a head-on, pitched-up body
posture increases kinetic energy that directs the system to
reach a desired cross basin/mode and avoid being attracted
into a fall basin/mode (figure 4(ii)) [53].

In pillar traversal, a cuboidal body induces a climb basin/
mode where the body is attracted to and pitches up against
the pillar, whereas an elliptical body eliminates it and induces
a desirable turn basin/mode where the body is repelled away
(figure 4(iii)) [52]. Alternatively, active turning by legs helps a
cuboidal body steer away from the climb basin/mode and
cross the barrier to transition to the turn basin/mode [52].
In beam traversal, when beams are stiff, it is challenging to
push across in a pitched-up mode attracted to a pitch basin,
and it is desirable to transition to a roll mode/basin to roll
into the beam gap to traverse (figure 4(iv)). Body kinetic
energy fluctuation from self-propulsion helps cross the
barrier to make this transition [50]. This transition is further
facilitated by reducing sprawling and differential use of
hind legs, which presumably destabilize and steer the
system towards the roll basin [51].

In strenuous ground self-righting (figure 4(v)), although
wing opening initiates a somersault and steers the system
towards an upright pitch basin/mode, it is insufficient to over-
come the large barrier. As a result, the system is frequently
trapped in a metastable basin/mode due to a triangular base
of support, leading to repeated failed attempts. However,
wing opening reduces the barrier to transition from the meta-
stable to a roll basin/mode, allowing small kinetic energy
fluctuation from leg oscillation to induce barrier crossing,
resulting in self-righting by rolling [57]. This transition is also
facilitated by proper wing–leg coordination that better steers
the system towards the lowered barrier to roll [58]. Randomness
in wing–leg coordination helps find proper coordination [59].

We emphasize that the desirable modes and strategies in
the obstacle interactions above aim at successful traversal. In
different tasks, other modes may be desirable. For example,
the fall mode in gap interaction (figure 4a,b(ii)) is desirable
for going into ground crevices, and the climb mode for
pillar interaction (figure 4a,b(iii)) is desirable for initiating
climbing up obstacles. Strategies can be discovered for these
modes accordingly using the same approach.

Using our feed-forward-controlled robotic physical
models [50,52,57–59] or with a human in the loop to switch
on the strategies [52–54,58], we have demonstrated that
these strategies increased robot performance substantially or
even enabled new capabilities in each model system (elec-
tronic supplementary material, table S1). Efforts remain to
study how robots should sense locomotor–terrain interaction
and use feedback control to make transitions intelligently.

(g) Stereotyped locomotor modes result from physical
interaction constraint

Although the self-propelled system can in principle move in
arbitrary ways, the observed locomotor modes are highly
stereotyped due to strong constraints from physical inter-
action (§4a). This stereotypy is because the potential energy
landscape is highly rugged, with distinct basins separated
by barriers, and the system is strongly attracted to landscape
basins in the potential energy landscape-dominated regime.
Because our potential energy landscapes are directly derived
from first principles (as opposed to fitting a model to behav-
ioural data [77,78]), this insight provided evidence that
behavioural stereotypy of animals emerges from the physical
interaction of their neural and mechanical systems with the
environment [12,13]. In addition, our systematic studies
revealed that variation in movement can lead to stochastic
locomotor transitions and is advantageous when locomotor
behaviour is separated into distinct modes, each of which
may be desirable for different scenarios.

We speculate that this physical constraint plays a role in the
evolution of animal morphology and behaviour. This is plaus-
ible because morphological [79–81] and behavioural [82]
adaptations that facilitate obstacle traversal and self-righting
are common when microhabitat properties physically con-
strain movement. Our potential energy landscape approach
is also useful for quantifying how physical interaction
constrains robot design, control and planning for locomotor
transitions in the large locomotor and terrain parameter space.

(h) Physical principles of locomotor–terrain interaction
are general

In the potential energy landscape-dominated regime, physical
principles and strategies that we discovered (figure 4c; elec-
tronic supplementary material, table S1) are applicable to a
broad range of the parameter space of model systems. For
example, obstacle attraction or repulsion is an inherent prop-
erty of the locomotor shape and insensitive to pillar size and
geometry [52]. Strategies that favour bump or gap traversal
are applicable to a large range of bump heights [54] or gaps
widths [53]. Physical principles of beam interaction explained
how pitch-to-roll transition probability changes as beam
stiffness varies over a large range [50].
5. Towards multi-pathway locomotor transitions
Considering the general physical principles of locomotor tran-
sitions fromdiverse simplemodel systems,we hypothesize that
multi-pathway locomotor transitions in heterogeneous



microscopic, near-equilibrium proteins

free energy landscape

potential energy landscape locomotor transition pathways

protein folding transition pathways

macroscopic, far-from-equilibrium, self-propelled animals and robots

physics + intelligence 
(neuromechanical feedback 

control, planning, etc.)

physics

(a)

(b)

Figure 5. Comparison of two energy landscape approaches. (a) Rugged free energy landscapes help understand how proteins fold to their native states by sto-
chastically transitioning from higher to lower free energy states via multiple pathways [67–69]. (b) We envision energy landscape modeling as a beginning of a
statistical physics approach, but with the addition of intelligence, for understanding how the neuromechanical control system mediates physical interaction to gen-
erate multi-pathway locomotor transitions in complex 3-D terrain. Note that our locomotor-terrain interaction system differs from protein folding in that animals and
robots are macroscopic, self-propelled, far-from-equilibrium and can have intelligence. Image credits: (a) Left: from [83]. Reprinted with permission from AAAS.
Right: adapted with permission from [84]. Copyright © (2012) American Chemical Society. (b) Right: copyright © IOP Publishing. Reproduced with permission from
[4]. All rights reserved.
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complex three-dimensional terrains can be understood by
composing larger-scale, higher-dimensional potential energy
landscapes (figure 5) from simple landscapes of abstracted
challenges (e.g. figure 1d–f ). Our terrain treadmill experiments
(figure 3e) are beginning to shed light on this [49]. Progress
towards such an understanding will lead to advancement for
several fields.
(a) Envisioned advancement for physics
The empirically discovered physical principles of locomotor
transitions using feed-forward self-propulsion (§4d) are
surprisingly similar to those of microscopic multi-pathway
protein folding transitions (see detail in [50]), where predic-
tive free energy landscape theories have been successful
[67–69]. This was unexpected, given the differences in scale
and nature of the interaction (macroscopic contact forces in
locomotion versus ionic and dipole interactions, hydrogen
bonds, van der Waals forces, hydrophobic interactions in
protein folding) [68].

We envision the creation of analogous potential energy
landscape theories, but with the addition of intelligence
(e.g. §4e,f ), to understand and predict how the animal’s ner-
vous system or robot’s sensing, control and planning systems
mediate physical interaction to generate multi-pathway loco-
motor transitions (such as observed in [4]). The next step
towards this is to model conservative forces using potential
energy landscape gradients, add stochastic, non-conservative
propulsive and dissipative forces that perturb the system to
‘diffuse’ across landscape barriers (analogous to [85], but
with closed-loop control of the landscape over locomotor
degrees of freedom), and simulate multi-pathway locomotor
transitions. Systematic studies to understand the principles
of force sensing [51] will inform how to steer the system
and modify the landscape to modulate transitions intelli-
gently using sensory feedback control. Such new theories
will help expand the physics of living systems to the organis-
mal level and expand statistical physics to macroscopic,
far-from-equilibrium, self-propelled (active) systems [65,66].

(b) Envisioned advancement for dynamical
systems theory

Our potential energy landscape approach provided a new
conceptual way of thinking about locomotor modes beyond
near-steady-state, limit cycle-like behaviour (e.g. walk, run
and climb [5–7]) (electronic supplementary material, figure
S8a). Locomotion in irregular terrain with repeated pertur-
bations requires an animal to continually modify its
behaviour, which cannot be described by limit cycles [61].
Our work demonstrated that, in the potential energy land-
scape-dominated regime, the system must destabilize from
an attractive landscape basin to transition from one mode
to another, and locomotor modes can be metastable [86],
far-from-steady manoeuvers (e.g. electronic supplementary
material, figure S8c). We foresee the creation of new dynami-
cal systems theories of terrestrial locomotion [22] that are
composed of multi-pathway transitions across modes
attracted to both landscape basins attractors and limit
cycles [87] (electronic supplementary material, figure S8d ).

In addition, such new dynamical systems theories model-
ling physical interaction may be combined with those that
model related processes and factors such as proprioception
[88], external sensory cues (e.g. predators, prey, resources)
[14,89], internal needs (e.g. hunger, mating) [90] and safety–
risk tradeoffs [91]. This integration will elucidate how these
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factors interplaywith physical interaction tomodulate animals’
locomotor transition behaviour in complex environments.

(c) Envisioned advancement for biology
Our potential energy landscape approach provides a means
towards the first principle, physical understanding of the
organization of locomotor behaviour, filling a critical knowl-
edge gap. The field of movement ecology [14] makes field
observations of trajectories of animals—often as a point
mass (e.g. [92])—moving and making behavioural transitions
in natural environments, because physical interactions are dif-
ficult to measure at such large scales. Recent progress in
quantitative ethology advanced understanding of the organiz-
ation of behaviours, often by quantifying kinematics in
homogeneous, near-featureless laboratory environments (see
[12,13] for reviews). Our work highlights the importance
and feasibility of, and opens new avenues for, studying how
stereotypy and organization of behaviour are constrained by
an animal’s direct physical interaction with realistic environ-
ments. Analysing the disconnectivity [69] of basins of future
composed landscapes for multi-pathway transitions will
reveal the hierarchy (‘treeness’ [93]) of locomotor modes.

In addition, there are opportunities to explore how physical
interaction during locomotion impacts large-scale processes
like predator–prey pursuit andmigrationwhere locomotor per-
formance is crucial [94]. If future potential energy landscape
theories can predict how locomotor performance depends on
relevant system parameters (§4d–g), they will provide a
proxy for fitness landscapes [95]. Such proxy fitness landscapes
will reveal how locomotor fitness exerts selective pressure on
morphology and behaviour that affect locomotor transitions
via physical interaction.

(d) Envisioned advancement for robotics
Future predictive potential energy landscape theories will pre-
dict strategies for robots to use physical interaction to generate
landscape basin attractors funnelled into one another [96] to
compose locomotor transitions to perform high-level, goal-
directed tasks in the realworld.Using informationof the geome-
try and physical properties of complex three-dimensional
terrain from sensors, a robot can abstract its locomotor task
into separate locomotor challenges (figure 1e) and calculate
their potential energy landscapes. Then, the robot can use the
landscape theories to identify possible transitions (figure 1d)
and predict how transition probabilities differ between strat-
egies (figure 4a,b). Finally, within its own constraints (e.g.
energy available and actuator force limits), the robot can plan
its strategies to make transitions that increase or even optimize
its probability to reach the goal (figure 1d). When the terrain
is sensed only up to a finite horizon with uncertainty, the
robot can react to newly sensed challenges or recently failed
attempts and update the pre-planned locomotor transition
sequence and strategies (analogous to reactive obstacle
avoidance using geometry [97]).

Recent learning approaches have managed to generate
slow locomotion where terrain perturbations are sufficiently
small for the learned controller to reject and stabilize the
robot around an upright body posture [98,99]. Although
learning approaches can in principle train the robot for any
task in simulation by brute force, even in such modest terrain,
the real system’s physics must still be modelled properly (e.g.
how motor dynamics affects leg dynamics) to narrow the
simulation-to-reality gap [98,99]. However, as our work
reveals, a robot should use physical interaction to destabilize
itself to make locomotor transitions to traverse large
obstacles. In addition, locomotor transitions are diverse and
stochastic, and they depend sensitively on locomotor and ter-
rain parameters and vary substantially with strategies.
Considering these, learning approaches alone will be fragile
for generating robot locomotor transitions in complex three-
dimensional terrain. Our physics approach will be crucial
for applying learning approaches here—it not only enables
robots with basic transition capabilities (§4f; electronic sup-
plementary material, table S1) to serve as real platforms for
learning, but also offers principles of how strategies affect
transitions across the large locomotor and terrain parameter
space (§4g) to guide learning.

In the longer term, we envision that first principle models
of locomotor–terrain physical interaction will be pervasive.
Analogous to self-driving cars that scan streets, robots will
create environmental physics maps and action databases for
locomotor transitions and add them to geometric maps in
the cloud for shared use [100]. They will help robots better
use physical interaction to traverse currently unreachable
complex three-dimensional terrain and expand our reaches
in natural, artificial and extraterrestrial terrain.
Data accessibility. Data and code are available at https://github.com/
TerradynamicsLab/potential_energy_landscape. An overview video
is available at https://doi.org/10.6084/m9.figshare.14207927.
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Table S1. Summary of major results from reviewed studies  

Challenges Observed interactions Physical principles of interaction Implications for robotics 
Category of transition strategy 

on energy landscape 

Gap 

[2]  

Animal crosses gaps as 

large as one body length. 

High approach speed, high initial 

body pitch, and high initial angular 

velocity facilitates crossing. 

Active body pitching increases 

traversable gap length by 50%. 
Steer system state. 

Bump 

[1] 

Animal climbs bumps up to 

4 times hip height. 

High initial body pitch and low 

initial body yaw facilitates 

climbing. 

Active body pitching increases 

traversable bump height by 75%. 
Steer system state. 

Pillar 

[3,4] 

Cuboidal and elliptical body 

shapes experience obstacle 

attraction and repulsion, 

respectively. 

Obstacle attraction/repulsion is an 

inherent property of body shape and 

insensitive to pillar geometry and 

size. 

Passive control of traversal using 

obstacle interaction modulated by 

body shape 

Elliptical body shape increased 

traversal probability of pillar field by 8 

times 

Active turning by legs helps cuboidal 

body steer away from and traverse 

obstacle 

Modify landscape topology 

(shape change). 

Steer system state 

(leg turning). 

Beams 

[5–7] 

Animal transitions between 

diverse locomotor modes to 

traverse. 

It is more likely to transition 

from pitch to roll mode to 

traverse as beams become 

stiffer. 

It flexes head, reduces leg 

sprawling, and uses legs 

differentially before rolling. 

Thin, rounded body shape facilitates 

body rolling; body oscillation 

kinetic energy fluctuation facilitates 

barrier crossing for pitch-to-roll 

transitions. 

Adding rounded ellipsoidal shell 

increases traversal probability by 4 

times. 

controlled oscillation modulates 

probability of locomotor transitions. 

Modify landscape topology 

(shape change). 

Perturb system state  

(kinetic energy fluctuation). 

Steer system state 

(leg adjustments). 

Self-

righting 

[8–12] 

Animal repeatedly opens 

wings and flails legs to self-

right. 

It rarely succeeds in 

somersaulting and often 

self-rights by rolling 

sideways. 

Wing opening reduces barrier to roll 

sideways. 

Barrier crossing is facilitated by leg 

flailing kinetic energy fluctuation, 

as well as proper wing-leg 

coordination, which can be achieved 

by randomness in actuation. 

Large wing opening, asymmetric small 

wing opening, coordinated wing-leg 

oscillations facilitate self-righting. 

Leg oscillation increases self-righting 

probability up to 7 times. 

Randomness helps find proper 

coordination. 

Change landscape barriers 

(wing opening). 

Modify landscape topology 

(asymmetric wing opening). 

Perturb system state 

(kinetic energy fluctuation). 
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Supplementary Text 

 

S1. Imaging tools to measure locomotor transitions and locomotor-terrain interaction 

There are several technical challenges to measuring locomotor transitions and locomotor-terrain 

interaction during traversal of complex 3-D terrain and self-righting. First, the traditional technique of using 

two or three cameras for measuring 3-D motion on flat surfaces is inadequate to record the large range of 

3-D rotations of the animal, robot, or terrain (if any) or cope with frequent occlusion, both common in 

complex 3-D terrain [5]. For example, the animal could be tracked in only 24%, 60%, or 77% of the frames 

during a beam traversal attempt with only 2, 3, or 4 cameras. In addition, manually measuring locomotor 

and terrain motion is laborious, especially for large datasets (~102−103 trials) required for making 

statistically meaningful conclusions when multiple locomotor modes are being observed. For example, for 

the ~300 animal trials in our study of beam traversal [6], it would take 500 hours to manually track the 

animal body and two beams. Furthermore, to measure appendage motion and frequent body-obstacle 

interaction smaller than body/obstacle size, we need high-accuracy 3-D kinematics. For example, a tracking 

error of ±1 mm in the animal’s forward position during beam interaction can over or underestimate beam 

deflection angle by ~13°. 

We developed several imaging tools to address these challenges. First, we developed an automated 

visible light imaging system (figure 3b) with up to 12 synchronized high-resolution, high-speed cameras 

[6,13]. This system can capture near-continuous locomotor-terrain interaction over the full range of 3-D 

translation and rotation observed and track the animal in more than 96% of the terrain interaction phase. In 

addition, we reduced the manual labor for calibration and 3-D motion reconstruction by 250 times by 

automatically tracking custom calibration objects (figure 3c) and animal and terrain motions (figure 3d) in 

each camera view, using uniquely distinguishable QR-code markers (figure 3a) [14]. Furthermore, to 

achieve high-accuracy measurement of locomotor-obstacle interaction, we designed custom calibration 

objects to span the entire field of view of all 12 cameras and used a high-precision 3-D printed object to 
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verify tracking and reconstruction fidelity (s.d. of position error = 0.6 mm over a 3-D calibrated field of 

view of 20 cm by 20 cm; s.d. of orientation error = 1.1°).  

  

S2.  General steps to create and use potential energy landscapes 

We developed potential energy landscapes for traversal of bump [1], gap [2], pillar [3], and beam 

[6,7] obstacles and ground self-righting [9]. Here we summarize general steps to calculate and use them 

(also see figure S1). 

1. Create a simplified physics model of the interaction with which system potential energy can be 

calculated as a function of relevant system degrees of freedom. In our studies, we focused on first 

understanding coarse-grained transitions between modes that differ significantly in how the body 

moves. Thus, to create the simplest potential energy landscape with minimal degrees of freedom, we 

approximated the animal or robot as a rigid body and neglected the legs. We used an ellipsoidal body 

shape resembling the animal body, except in the pillar study where different body shapes were studied. 

In addition, we assumed that the body does not penetrate the obstacle or ground and its lowest point is 

always in contact with the ground. See Sections S3-S7 for other assumptions specific to each model 

system. Finer-grained transitions between more nuanced modes that involve body bending and leg 

motion can, in principle, be studied using higher-dimensional potential energy landscapes, although 

more challenging—see reviews of energy landscape modeling of protein folding (e.g., [15]). 

2. Quantify system potential energy as a function of system degrees of freedom and physical/geometrical 

properties. For gap, bump, pillar, and self-righting interaction where body parts are assumed rigid and 

terrain elements are rigid and fixed, system potential energy is the body gravitational potential energy 

(E = mgzcom, where m is the body mass, g is gravitational acceleration, and zcom is body center of mass 

height). For beam interaction, in addition to body gravitational potential energy, beam gravitational 

energy and elastic potential energy also contribute to system potential energy. 

3. Measure relevant physical/geometrical properties (such as beam stiffness, body mass/geometry) 

required to calculate system potential energy. 
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4. Choose the few system state degrees of freedom over which the potential energy landscape is to be 

constructed. Often degrees of freedom that represent self-propulsion (e.g., body forward position 

relative to obstacles, wing opening angle in ground self-righting) and those that change substantially in 

response to terrain interaction (e.g., body pitch, roll, yaw) are chosen. Because a high-dimensional 

landscape over a large number of degrees of freedom is more challenging to understand three degrees 

of freedom can be chosen first to visualize the landscape more easily, as a potential energy map over 

two degrees of freedom which further evolves over the third degree of freedom (e.g., Supplementary 

Movie S1). See Section S8 for visualizing the potential energy landscape over all three chosen degrees 

of freedom. We note that constructing the landscape over only three degrees of freedom is a 

compromise to simplify analysis and already provide substantial insight into experimental observations. 

More rigorous analysis of high-dimension landscape over all relevant degrees of freedom and 

comparison to experimental observations may reveal additional insight in the future. 

5.  Calculate the potential energy landscape over the first two chosen degrees of freedom while keeping 

the third (and other) degrees of freedom constant. Varying both these degrees of freedom in small 

increments over the desired range and calculating the potential energy at each point of the grid in this 

2-D parameter space. 

6. Construct the evolving potential energy landscape by repeating step 5 while varying the third (and 

remaining) degrees of freedom, either using an experimentally measured trajectory or prescribing a 

trajectory. 

7. Visualize system state trajectory on the landscape, by projecting the measured or prescribed values of 

the first two chosen degrees of freedom on the evolving potential energy landscape. Use only the end 

points of the trajectory, which represent the current state, to show the actual potential energy of the 

system. Use the rest of the visualized trajectory to show how measurements of the first two chosen 

degrees of freedom evolve on the landscape. Because the potential energy landscape evolves as the 

third degree of freedom changes and can occlude the trajectory, project the trajectory onto the landscape 

surface for visualization. 
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8. Find local minima and identify basins of the landscape. For landscapes with simple shapes, basins can 

be identified from visual inspection. A more rigorous method is to use graph search algorithms [16] to 

first find the saddle points on the landscape and then identify the basins separated by them. 

9. Determine the potential energy barrier for transitioning from one basin to another, which occurs at the 

saddle separating the basins. For landscapes with relatively simple shapes, this can be done in several 

steps. First, consider imaginary straight paths on the landscape away from one basin minimum towards 

the direction of another basin. Then, along each imaginary straight path, obtain a cross section of the 

landscape and measure the barrier along this cross section as the maximal increase in potential energy 

to escape from the basin along the straight path. Repeat this step to calculate potential barriers for 

transitioning along all possible directions to transition to the other basin. The lowest barrier among all 

of them is the barrier to transition from this basin to the other. See [6] for detailed steps. A more rigorous 

method is to calculate the potential energy increase from the basin minimum to the saddle point 

separating it from another basin using  graph search algorithms [16]. 

10. Repeat steps 7-9 to measure system potential energy and potential energy barrier for transition from 

one basin to another as the third degree of freedom is varied.  

11. Additional metrics, such as potential energy of basin minima, kinetic energy fluctuation, direction of 

system state velocity on the landscape, and energy landscape gradients, may be measured. Together, 

these help understand system behavior and principles of transitions across landscape basins. 

Below, we briefly summarize specifics of calculating the potential energy landscape of each model 

system. See respective original studies [1–3,6,7,9] for more detail, except the landscape of gap interaction 

which is first presented here. Note that here we renamed some modes from those in the original studies to 

better distinguish modes across different model systems. See [17] for data, code and interactive plots of 

potential energy landscapes. 
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Figure S1. General steps to calculate and use potential energy landscape of locomotor terrain 

interaction.  
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S3. Potential energy landscape of gap interaction 

In our study of dynamic traversal of large gap obstacles, we focused on understanding and 

predicting successful traversal dynamics by creating a template model of gap crossing [2]. However, a 

potential energy landscape approach can also provide insight into the emergence of both successful crossing 

and falling and strategies to make the desired transition. 

We calculated the potential energy landscape of body-gap interaction over the body pitch-yaw 

space as the body moves forward (figures S2). Throughout traversal, we constrained the body to maintain 

contact with the ground or the bottom of the gap and not penetrate the vertical sides of the gap. Although 

the body often lost contact with ground momentarily during crossing in animal and robot experiments, this 

constraint was required to use the potential energy landscape to model the fall mode. For a given body 

forward position x, we varied body pitch and yaw over [−90°, 90°] and calculated body potential energy 

from this constraint. Note that positive pitch corresponds to the body pitching head down. 

Before encountering the gap, the body moves forward on level ground (figure S2a, i). In this case, 

potential energy depends only on body pitch and not on body yaw. The potential energy landscape has a 

global minimum valley along zero body pitch (figure S2c, i). As the body moves over the gap, pitching 

downwards lowers the center of mass and reduces potential energy (figure S2a, ii’). As a result, the initial 

global minimum valley shifts in the positive pitch direction (positive pitch is pitching head down), and a 

new fall basin develops around it (figure S2c, ii). In the fall basin, potential energy also depends on body 

yaw because, beyond a certain yaw, the body must pitch up to not penetrate the gap’s vertical sides. 

Similarly, as the body continues to move forward in the gap, it must pitch down further to not penetrate the 

far vertical side of the gap. Alternatively, it can pitch up until its bottom contacts the farther edge of the 

gap. Because increasing or decreasing pitch increases potential energy, a cross basin also emerges, centered 

around the pitched-up state (figure S2c, iii). 

Approaching the gap more slowly and/or with a lower body pitch and/or higher body yaw 

magnitude decreases the system’s initial kinetic and/or potential energy and increases its probability of 

being trapped in the fall basin, resulting in the body falling into the gap (figure S2a ii’). After falling, the 
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body can turn sideways (for a sufficiently wide gap) and move within the gap (figure S2a ii’→iii’, c 

ii’→iii’). By contrast, approaching the gap head-on (with less body yaw), more rapidly, and/or with a higher 

body pitch (figure S2a ii, c ii) increases the system’s initial kinetic and/or potential energy and increases its 

probability of overcoming the potential energy barrier to reach the cross basin (figure S2a iii, c iii), resulting 

in the body crossing the gap. These modeling insights are consistent with those from the dynamical template 

[2]. 

 

Figure S2. Locomotor transitions on potential energy landscape of gap obstacle. (a) Snapshots of body 

before (i) and during (ii and iii) interaction with gap in cross and fall modes. (b) Definition of variables and 

parameters. (c) Snapshots of potential energy landscape over body pitch-yaw space before (i) and during 

(ii and iii) interaction. Numbered dots represent corresponding system states in (a). Cyan arrows are 

representative state trajectories for body crossing gap (i→ii→iii) and falling into gap (i→ii’→iii’). Note 

that landscape evolves as body moves forward (increasing x). Dashed black curves show potential energy 

barriers separating cross and fall basins. Potential energy is normalized to maximum value possible during 
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interaction. Note that we renamed as cross and fall modes here the traverse and fail modes in the original 

study to better distinguish modes across different model systems. Also see movie S1. Note from the movie 

that for a small range of forward position x, the cross basin momentarily becomes as a saddle (which is a 

local minimum along the pitch axis but a local maximum along the yaw axis). 
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S4. Potential energy landscape of bump interaction 

For a bump obstacle [1], we calculated the potential energy landscape of body-bump interaction 

over the body pitch-yaw space as the body moves forward (figures S3). Throughout traversal, we 

constrained the body to maintain contact with either the ground or top of the bump and not penetrate the 

ground and vertical sides of the bump. For a given body forward position x, we varied body pitch and yaw 

over [−90°, 90°] and calculated body gravitational potential energy. Note that positive pitch corresponds to 

the body pitching head down. 

Figure S3. Locomotor transitions on potential energy landscape of bump obstacle. (a) Snapshots of 

body before (i) and during interaction with bump in climb (ii→iii) and deflect (ii’→iii’) modes. (b) 

Definition of variables and parameters. (c) Snapshots of potential energy landscape over body pitch-yaw 

space before (i) and during (ii and iii) interaction. Numbered dots represent corresponding system states in 

(a). Yellow arrows are representative state trajectories for body climbing bump (i→ii→iii) and deflecting 

sideways (i→ii’→ii’). Because deflected body does not move beyond bump (x = 0), deflect mode is not 

shown in c, iii. Note that landscape evolves as body moves forward (increasing x). Dashed black curves 
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show potential energy barriers separating climb and deflect basins. Potential energy is normalized to 

maximum value possible during interaction. Note that we renamed as cross and fall modes here the traverse 

and fail modes in the original study to better distinguish modes across different model systems. Also see 

movie S1. Note from the movie that for a small range of forward position x, the climb basin momentarily 

becomes a saddle (which is a local minimum along the pitch axis but a local maximum along the yaw axis). 

Before encountering the bump, the body moves forward on level ground (figure S3a, i); in this case, 

potential energy depends only on body pitch and not on body yaw. The potential energy landscape has a 

global minimum valley along zero body pitch (figure S3c, i). As the body moves close to the bump, due to 

the constraints, it can remain horizontal only if it yaws and deflects. Thus, the initial global minimum valley 

splits into two deflect basins (figure S3c, ii), corresponding to the body yawing left or right. Alternatively, 

the body can pitch up until it does not penetrate the bump; pitching up any more or less will cause the 

potential energy to increase due to the constraints. As a result, a climb basin develops (figure S3c, ii). As 

the body continues to move forward onto the bump (figure S3c, iii), the climb basin reverts back to the 

initial global minimum valley, except having a higher potential energy. Note that for a small range of 

forward position x, the climb basin momentarily becomes as a saddle (which is a local minimum along the 

pitch axis but a local maximum along the yaw axis). In this range of x, the climb basin is a lower dimensional 

attractor with attraction only along the pitch direction (its stable manifold [18]). 

See [1] for detail of animal and robot observations, landscape modeling, and strategies that facilitate 

climbing and suppress deflection. 
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S5. Potential energy landscape of pillar interaction 

For pillar interaction, we calculated the potential energy landscape over the body pitch-bearing 

(turning) space as the body moved forward (figure S4). For a given body forward position (x, y), we varied 

body pitch and bearing over [−90°, 90°] and calculated body potential energy. Note that positive pitch 

corresponds to the body pitching head down. With these constraints, the potential energy depends only on 

body pitch and not on bearing, as the latter does not affect center of mass height. 

Before encountering the pillars, the body moves forward on level ground (figure S4a, b, i). The 

potential energy landscape for both body shapes has a global minimum valley along zero body pitch (figure 

S4d, e, i). As the body moves close to the pillar, it must pitch or turn to not penetrate the pillar; the states 

with insufficient pitching or turning are prohibited (figure S4d, e, white regions). 

As the cuboidal body moves closer to the pillar, two prohibited regions emerge on both sides of a 

climb basin (figure S4d, ii). As the body continues to move forward, the local minimum of climb basin, 

surrounded by the two prohibited regions, shifts towards higher body pitch (figure S4d, ii→iii). The body 

can traverse the pillar by pitching and turning to overcome potential energy barriers and escaping the climb 

basin (figure S4d, ii→iii’→iv’). If the body pitches upward by more than 90°, it flips backwards (figure 

S4d, ii→iii→iv). 

As the elliptical body moves close to the pillar, a single prohibited region emerges at the center of 

the landscape (figure S4e, i→ii). As the body moves forward, this prohibited region becomes larger. Instead 

of pitching and climbing, the elliptical body can traverse the pillar by turning sideways to retain a horizontal 

posture by escaping to the turn basin (figure S4e, ii→iii) and continue moving forward (figure S4e, iii→iv). 

See [3] for detail of animal and robot observations, landscape modeling, and strategies that facilitate 

traversal, suppress climbing, and transition from climbing to traversal. 
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Figure S4. Locomotor transitions on potential energy landscape of pillar obstacle. (a, b) Snapshots of 

body before (i) and during (ii-iv/iv’) interaction with the pillar for cuboidal (a) and elliptical (b) body 

shapes. (c) Definition of variables and parameters, using cuboidal body shape as example. (d) Snapshots of 

potential energy landscape over body pitch-bearing space before (left) and during (center and right) 

interaction for cuboidal body shape. Numbered dots represent corresponding system states in (a). Red 

arrows are representative state trajectories for cuboidal body first pitching up against pillar (i→ii), 
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continuing to climb against pillar (ii→iii), and finally flipping over (iii→iv), or turning sideways and 

traversing (ii→iii’→iv’). (e) Snapshots of potential energy landscape over body pitch-bearing space before 

(left) and during (center and right) interaction for elliptical body shape. Representative state trajectories for 

elliptical body first contacting pillar (i→ii) and then turning away from pillar and traversing (ii→iii→iv). 

Note that landscape evolves as body moves forward (increasing x). Potential energy is normalized to 

maximum value possible during interaction. Note that we renamed as climb mode here the turn towards 

and pitch up mode in the original study [3] to better distinguish modes across different model systems. Also 

see movie S1.  
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S6. Potential energy landscape of beam interaction  

For beam interaction, we calculated the potential energy landscape over the body pitch-roll space 

as the body moves forward (figure S5). We modeled the beams as rigid rectangular plates on torsional joints 

and the torsional joint as a perfect Hookean torsional spring. Because the animal or robot almost always 

pushed forward against the beams, in the model we only allowed forward beam deflection. Forward 

deflection lowers the beam center of mass and thus beam gravitational potential energy. We calculated 

system potential energy E by summing up body and beam gravitational potential energy and beam elastic 

potential energy: 

E = mbodygz + 
1

2
 mbeamgL(cosθ1 + cosθ2 – 2) + 

1

2
 K(θ1

2 + θ2
2)    (1) 

where mbody is body mass, g is gravitational acceleration, z is body center of mass height increase from its 

equilibrium configuration (at zero pitch and zero roll) without beam contact, mbeam is beam mass, L is beam 

length, K is beam torsional stiffness, and θ1 and θ2 are beam deflection angles from vertical, with θ1,2 

≥ 0 (figure S5b). For a given body horizontal position (x, y) and body yaw, we varied body pitch and roll 

over [−180°, 180°] and calculated system potential energy (only a smaller relevant range of body pitch and 

roll is shown in figures S5).  

Before encountering the beams, the body moves forward on level ground (figure S5a, i), and the 

potential energy landscape has a global minimum at zero body pitch and zero body roll (figure S5c, i). As 

the body moves closer to the beams, the beams are deflected forward for certain body orientations, and the 

global minimum evolves into a pitch basin around a local minimum at a finite body pitch and zero body 

roll (figure S5c, ii). This corresponds to the body pitching up and pushing against the beams (figure S5a, ii, 

iii). In addition, two roll basins emerge on both sides of the pitch basin (figure S5c, ii, iii), corresponding 

to the body rolling left or right into the gap between the two beams with minimal beam deflection. To 

traverse, the initially pitched-up body (figure S5a, c, i→ii) can either continue to push against the beams 

while maintaining a positive pitch (figure S5c, ii→iii) or roll into the gap (figure S5c, ii→iii’).  
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See [6] for detail of animal and robot observations, landscape modeling, and see [6,7] for strategies 

that facilitate transition from pitching to rolling. 

 

Figure S5. Locomotor transitions on potential energy landscape of beam obstacle. (a) Snapshots of 

body before (i) and during (ii and iii) interaction with the beams in pitch and roll mode. (b) Definition of 

variables and parameters. (c) Snapshots of potential energy landscape over body pitch-roll space before (i) 

and during (ii and iii) interaction. Numbered dots represent corresponding system states in (a). Green arrows 

are representative state trajectories for body pitching up (i→ii) and pushing across the beams (ii→iii) or by 

rolling into beam gap to traverse (ii→iii’). Note that landscape evolves as body moves forward (increasing 

x). Dashed grey curves show potential energy barriers separating pitch and roll basins. Also see movie S1.   
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S7. Potential energy landscape of self-righting 

For self-righting, we calculated the potential energy landscape over the body pitch-roll space as the 

wings open (figure S6). During self-righting, center of mass height and thus potential energy depend not 

only on body shape [8] but also on wing opening [12] and leg flailing [9]. However, given the difficulties 

in measuring and quantifying the animal’s highly variable motion [8,9], we chose to focus potential energy 

landscape modeling on the simplified robotic physical model. We approximated all parts of the robot to be 

rigid and of uniform density. 

Because the effect of leg flailing perturbation was modelled using kinetic energy fluctuation, we 

set the robot’s leg to be held fixed in the middle of the body when calculating the potential energy landscape. 

We varied wing opening angle within [0º, 90°]. For each wing opening angle, we then varied body pitch 

and roll within [−180°, 180°] and calculated the system potential energy for each combination of body pitch 

and body roll (figure S6). Initially, with the wings closed, the body is horizontal and upside-down (figure 

S6a, i), and the system is in an upside-down basin (figure S6c, i). As the wings open, the body pitches 

forward. It enters a metastable state, with the center of mass projecting down into a triangular support on 

the ground formed by the head and both wings (figure S6a, i→ii). On the landscape, this process 

corresponds to the upside-down basin evolving into a metastable basin around a local minimum with a 

positive pitch and zero roll (figure S6c, i→ii). To self-right, the body can either continue to pitch to complete 

a somersault (figure S6a, c, ii→iii→iv) or roll sideways (figure S6a, c, ii→iii’→iv’) to reach one of the 

upright basins.  

See [9] for detail of animal and robot observations, landscape modeling, and see [8–12] for 

strategies that facilitate transition from pitching to rolling. 
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Figure S6. Locomotor transitions on potential energy landscape of self-righting. (a) Snapshots of robot 

during its wing opening (i→ii) and closing (ii→i) attempts to self-right by pitching and somersaulting 

(ii→iii→iv) and by rolling sideways (ii→iii’→iv’). (b) Definition of variables. (c) Snapshots of potential 
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energy landscape over body pitch-roll space with different wing opening. Numbered dots represent 

corresponding system states in (a). Brown arrows show representative state trajectories for body first 

pitching up to reach metastable state (i→ii), continuing to pitch and somersault (ii→iii→iv), or rolling 

sideways (ii→iii’→iv’). Note that landscape evolves as wings open or close (changing θwing). Dashed black 

curves show potential energy barriers separating upside-down/metastable from pitch upright and roll 

upright basins. Also see movie S1. 

  



21 

 

S8. Visualizing higher dimensional potential energy landscape 

Because we consider system potential energy in the space of three chosen degrees of freedom, the 

energy landscape is a 4-D surface, with potential energy as the fourth dimension. For each model system, 

we created an interactive figure to show the cross section of the 4-D surface over each of the three chosen 

degrees of freedom [17]. Note that for pillar interaction landscape, no color is shown for the prohibited 

regions in the 3-D parameter space. Such analysis is useful—for example, we used the potential energy 

landscape to calculate the minimal torque required to steer the system state from pitch to roll basin during 

beam traversal and demonstrated the controlled transition using sensory feedback [19]. 

 

Figure S7. Visualization of potential energy landscape over three chosen degrees of freedom. Shown 

for beam interaction as an example. (a) Potential energy landscape over the three chosen degrees of freedom 

(body pitch, roll, and forward position (x) for beam interaction). (b, c, d) Cross sections of landscape 

orthogonal to each chosen degree of freedom. See interactive visualizations and data of each model system 

at [17]. 
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Figure S8. Envisioned dynamical systems theories of locomotor transitions in the potential energy 

landscape-dominated regime. (a) During stable walking and running on flat ground, an animal or a robot 

is transiently destabilized from an attractive limit cycle by occasional small obstacles [20] but quickly return 

to it. (b) In rough terrain, the animal or robot is continually perturbed substantially, whose dynamics is not 

well described by a limit cycle. (c, d) We posit that animals and robots must destabilize from limit cycles 

to transition between different landscape basin attractors when moving in the potential energy landscape-

dominated regime. Spiral sinks [18] are used as a speculative schematic for landscape basin attractors; their 

exact nature remains to be discovered.  
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